in

Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World

  • Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 7, 4103 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49 (2018).

    Google Scholar 

  • Otim, M. H. et al. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE 13, e0194571 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • FAO. Briefing note on FAO actions on fall armyworm in Africa, <http://www.fao.org/3/a-bt415e.pdf> (2018).

  • FAO. Briefing note on FAO actions on fall armyworm, <http://www.fao.org/3/BS183E/bs183e.pdf> (2019).

  • Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. India 115, 621–623 (2018).

    CAS 

    Google Scholar 

  • Sharanabasappa, D. et al. First report of the fall Armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae) an Alien invasive pest on Maize in India. Pest Manag. Horticultural Ecosyst. 24, 23–29 (2018).

    Google Scholar 

  • FAO. in FAO Regional Conference for Asia and the Pacific, 35th Session 7 (Thimphu, Bhutan, 2019).

  • EPPO. First report of Spodoptera frugiperda in Thailand. (2019).

  • Tay, W. T. & Gordon, K. H. J. Going global – genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).

    PubMed 

    Google Scholar 

  • Zhang, L. et al. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province. Plant Prot. 45, 19–24 (2019).

    Google Scholar 

  • Wu, Q., Jian, Y. & K, W. Analysis of migration routes of the fall armyworm Spodoptera frugiperda (J. E. Smith) form Myanmar to China. Plant Prot. 45, 1–6 (2019).

    CAS 

    Google Scholar 

  • USDA. Fall armyworm damages corn and threatens other crops in Vietnam. United States Department of Agriculture, Foreign Agricultural Service, Report Number: VM2019-0017 (2019).

  • FAO. Report of first detection of fall armyworm (FAW) in the Republic of the Philippines. Report No. PHL-02/1, (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).

  • Navasero, M. V. et al. Detection of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) using larval mrophological characters, and observations on its current local distribution in the Philippines. Philipp. Ent 33, 171–184 (2019).

    Google Scholar 

  • Vennila, S. et al. in International Workshop on Facilitating International Research Collaboration on Transboundary Plant Pests. (Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan, 2019).

  • FAO. First detection of fall armyworm in China. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).

  • Silver, A. Caterpillar’s devastating march across China spurs hunt for native predator. Nature 570, 286–287 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Song, X. P. et al. Intrusion of Fall Armyworm (Spodoptera frugiperda) in Sugarcane and Its Control by Drone in China. Sugar Tech. 22, 734–737 (2020).

    Google Scholar 

  • Czepak, C. et al. Especial Spodoptera: Migração acelerada. Cultivar Gd. Culturas 244, 26–29 (2019).

    Google Scholar 

  • FAO. First detection of Fall armyworm in Torres Strait of Australia. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2020).

  • Queensland Government, D. o. A. a. F. First mainland detection of fall armyworm, accessed 13 March 2020 <https://www.daf.qld.gov.au/news-media/media-centre/biosecurity/news/first-mainland-detection-of-fall-armyworm> (2020).

  • Wild, S. Invasive pest hits Africa. Nature 543, 13–14 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Porter, J. E. & Hughes, J. H. Insect eggs transported on the outer surface of airplanes. J. Economic Entomol. 43, 555–557 (1950).

    Google Scholar 

  • Jeger, M. et al. Pest categorisation of Spodoptera frugiperda. Efsa J. https://doi.org/10.2903/j.efsa.2017.4927 (2017).

  • Early, R., Gonzalez-Moreno, P., Murphy, S. T. & Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. Neobiota https://doi.org/10.3897/neobiota.40.28165 (2018).

  • FAO. Fall armyworm likely to spread from India to other parts of Asia with South East Asia and South China most at risk. (Food and Agriculture Organization of the United Nation, 2018).

  • Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13219 (2020).

  • Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 10, e02919 (2019).

    Google Scholar 

  • du Plessis, H., van den Berg, J., Ota, N. & Kriticos, D. J. Spodoptera frugiperda (Fall Armyworm). in CSIRO-InSTePP Pest Geography. June, 2018 (2018).

  • FAO. First detection report of the fall armyworm Spodoptera frugiperda (Lepdioptera: Noctuidae) on maize in Myanmar. (Food and Agriculture Organization of the United Nations, International Plant Protection Convention, 2019).

  • Sun, X.-X. et al. Case study on the first immigration of fall armyworm Spodoptera frugiperda invading into China. J. Integr. Agriculture 18, 2–10 (2019).

    Google Scholar 

  • Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).

    Google Scholar 

  • Assefa, F. & Ayalew, D. Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: a review. Cogent Food Agr. 5, 1641902 (2019).

    Google Scholar 

  • Hurska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 11 (2019).

    Google Scholar 

  • Firake, D. M. & Behere, G. T. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biol. Control 148, 104303 (2020).

    CAS 

    Google Scholar 

  • Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).

  • Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenee, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica 143, 305–316 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS ONE 14, e0222332 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jing, D. P. et al. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci. 27, 780–790 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahadeva, S. H. M. et al. Prevalence of “R” strain and molecular diversity of fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian J. Entomol. 80, 544–553 (2018).

    Google Scholar 

  • Murua, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).

    PubMed 

    Google Scholar 

  • Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).

    CAS 

    Google Scholar 

  • Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Czepak, C., Albernaz, C., Vivan, L. M., Guimarães, H. O. & Carvalhais, T. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesq. Agropec. Trop., Goia.̂nia 43, 110–113 (2013).

    Google Scholar 

  • Arnemann, J. A. et al. Multiple incursion pathways for Helicoverpa armigera in Brazil show its genetic diversity spreading in a connected world. Sci. Rep. 9, 19380 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tay, W. T. et al. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 8, e80134 (2013).

  • Tay, W. T. et al. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil. Sci. Rep. 7, 45302 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Behere, G. T. et al. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol. Biol. 7, 117 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearce, S. L. et al. Erratum to: Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 15, 69 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearce, S. L. et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 15, 63 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillemaud, T., Ciosi, M., Lombaert, E. & Estoup, A. Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. Cr Biol. 334, 237–246 (2011).

    Google Scholar 

  • Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, C. J., Tay, W. T., McGaughran, A., Gordon, K. & Walsh, T. K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25, 5296–5311 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl Acad. Sci. USA 115, 5034–5039 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, S. The interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).

    Google Scholar 

  • Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).

    Google Scholar 

  • Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep.-Uk 8, 3710 (2018).

    Google Scholar 

  • Arias, O. et al. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Manag. Sci. 75, 2948–2957 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, T. K. O. & Vu, T. P. Checklist of turfgrass insect pests, morphology, biology and population fluctuation of Herpetograma phaeopteralis (Guenee) (Lepidopera: Pyralidae) in Ha Noi, in Spring-Summer 2008. in The 3rd National Conference of Ecology and Natural Resources, Ha Noi. 1490–1498.

  • Pham, V. L. On time to recognise first potential Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Vietnam and its Vietnamese name. in Plant Protection Magazine No. 4/2019 (Plant Protection Research Institute of Vietnam, July, 2019).

  • Vu, T. P. Insect pests of turf grass, biology, ecology and the control of Herpetogramma phaeoptralis (Guenée) in Hà Nội in Spring Summer 2008 MSc. Thesis, Hà Nội Agriculture University, Vietnam (2008).

  • Nguyen, V. D., Ha, Q. H. & Nguyen, T. T. C. in Vietnam Insects and Pests. (ed. V. L. Pham) (2012).

  • Gilligan, T. M. & Passoa, S. C. LepIntercept, An identification resource for intercepted Lepidoptera larvae. Identification Technology Program (ITP), <http://idtools.org/id/leps/lepintercept/frugiperda.html> (2014).

  • Gui, F. R. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell https://doi.org/10.1007/s13238-020-00795-7 (2020).

  • Stokstad, E. FOOD SECURITY New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Baloch, M. N., Fan, J. Y., Haseeb, M. & Zhang, R. Z. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects 11, 172 (2020).

    PubMed Central 

    Google Scholar 

  • Juarez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol. Exp. Appl. 152, 182–199 (2014).

    CAS 

    Google Scholar 

  • Groot, A. T. et al. Evolution of reproductive isolation of Spodoptera frugiperda. Pheromone Communication in Moths: Evolution, Behavior, and Application, 291–300 (2016).

  • Nagoshi, R. N., Meagher, R. L., Nuessly, G. & Hall, D. G. Effects of fall armyworm (Lepidoptera: Noctuidae) interstrain mating in wild populations. Environ. Entomol. 35, 561–568 (2006).

    Google Scholar 

  • Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orsucci, M. et al. Transcriptional plasticity evolution in two strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) feeding on alternative host-plants. Preprint at bioRxiv https://doi.org/10.1101/263186 (2018).

  • Lopes-da-Silva, M., Sanches, M. M., Stancioli, A. R., Alves, G. & Sugayama, R. The role of natural and human-mediated pathways for invasive agricultural pests: a historical analysis of cases from Brazil. Agric. Sci. 5, 634–646 (2014).

    Google Scholar 

  • Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Economic Entomol. 108, 135–144 (2015).

    CAS 

    Google Scholar 

  • Tembrock, L. R., Timm, A. E., Zink, F. A. & Gilligan, T. M. Phylogeography of the recent expansion of Helicoverpa armigera (Lepidoptera: Noctuidae) in South America and the Caribbean basin. Ann. Entomol. Soc. Am. 112, 388–401 (2019).

    CAS 

    Google Scholar 

  • Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5, e9743 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).

    Google Scholar 

  • Valencia-Montoya, W. A. et al. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa108 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh, T. K. et al. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS ONE 13, e0197760 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. Risks of biological invasion on the belt and road. Curr. Biol. 29, 499–505.e494 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Preprint at Commun Biol. 664, https://doi.org/10.1038/s42003-020-01382-6 (2020).

  • Yainna, S. et al. Genomic balancing selection is key to the invasive success of the fall armyworm. Preprint at bioRxiv https://doi.org/10.1101/2020.06.17.154880 (2020).

  • Tay, W. T. et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci. Rep.-Uk 7, ARTN 429 (2017).

    Google Scholar 

  • Walsh, T. K. et al. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 9, 2933–2944 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

    PubMed 

    Google Scholar 

  • Villesen, P. FaBox: an online toolbox for FASTA sequences. Mol. Ecol. Notes 7, 965–968 (2007).

    CAS 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nam, K. et al. Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae). Preprint at bioRxiv https://doi.org/10.1101/452870 (2018).

  • Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. Preprint at bioRxiv https://doi.org/10.1101/671560 (2019).

  • Xiao, H. et al. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 20, 1050–1068 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. (Lawrence Berkeley National Laboratory. 2014).

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).

    PubMed 

    Google Scholar 

  • Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeifer, B., Wittelsburger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    CAS 
    PubMed 

    Google Scholar 

  • Raymond, M. & Rousset, F. Genepop (Version-1.2) – population-genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Google Scholar 

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neuditschko, M., Khatkar, M. S. & Raadsma, H. W. NetView: a high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS ONE 7, e48375 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinig, E. J., Neuditschko, M., Khatkar, M. S., Raadsma, H. W. & Zenger, K. R. netview p: a network visualization tool to unravel complex population structure using genome-wide SNPs. Mol. Ecol. Resour. 16, 216–227 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodohl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Google Scholar 

  • Sundqvist, L., Keenan, K., Zackrisson, M., Prodohl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastian, M., Heymann, S. & Jacomy, M. in International AAAI Conference on Weblogs and Social Media (2009).

  • Tay, T. et al. Global FAW population genomic signature supports complex introduction events across the Old World. v1. CSIRO. Data Collection. https://doi.org/10.25919/y3nd-2903 (2021).

  • Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA 70, 3321–3323 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges