in

Global relationships in tree functional traits

[adace-ad id="91168"]

Trait models

Our analysis included 491,001 unique trait measurements across 18 traits, encompassing 13,189 tree species from 2313 genera, reflecting ~21% of all known tree species33 (Fig. 1). Traits were measured at 8683 locations across the globe and 373 distinct eco-regions (Supplementary Tables 1, 2), with georeferenced measurements capturing 15% of known tree species in Eurasia, 13% in South America, 9% in Oceania, and 6% in North America and Africa33. The raw data covered 22% of all trait-by-species combinations (Fig. 1b, Supplementary Fig. 2), nearly identical to other large-scale trait analyses across the entire plant kingdom5,17,30. Yet there was considerable variation in coverage across traits, with traits such as specific leaf area and leaf nitrogen measured on more than 60% of all species, versus traits such as crown diameter and conduit diameter, which captured fewer than 5% of species (Fig. 1b, Supplementary Fig. 2). Across all species, 423 had more than 10 unique traits measured, and two species (Picea abies and Pinus sylvestris) had measurements for all 18 traits. In general, there was highly consistent coverage across taxonomic orders and traits (Supplementary Fig. 1), with gymnosperms being slightly overrepresented (comprising 3.1 ± 6.8% of measurements in the database versus ~1% of all known tree species34,35, Fig. 1a), in part reflecting the wider geographic range of many gymnosperms relative to angiosperms36.

To explore relationships in functional traits at the individual level, we used random-forest machine-learning models to estimate missing trait values for each individual tree as a function of its environment and phylogenetic history. We also conducted a second set of analyses where trait expression was estimated using phylogenetic information only, which allowed us to include additional non-georeferenced data (Fig. 1), while also quantifying the relative contribution of environmental information on trait expression (Supplementary Fig. 6). Following standard approaches5,15,29,30, all traits were log-transformed and standardized to allow for statistically robust comparisons. Environmental predictors included ten variables encompassing climate37,38,39,40, soil41, topographic42, and geological43 features. Phylogenetic history was incorporated via the first ten phylogenetic eigenvectors44,45 (see Methods). By including environmental information alongside phylogenetic information, this approach not only allowed us to impute species-level traits which have strong phylogenetic signals and weak environmental signals, as is traditionally done17,30 but also to robustly estimate traits which have a weak phylogenetic signal and are instead strongly sensitive to environmental conditions. Moreover, being a non-parametric approach, the random forest makes no a priori assumptions about how trait expression varies across phylogenetic groups or environments.

Across all 18 traits, the best-fitting models explained 54 ± 14% of out-of-fit trait variation (VEcv, see Methods), ranging from 26% for stem diameter to 76% of the variation in leaf area (Supplementary Figs. 6, 7). This accuracy was quantified using buffered leave-one-out cross-validation to account for spatial and phylogenetic autocorrelation46, and thus serves as a conservative lower bound for species which are phylogenetically and environmentally distinct from the observations47. There was no significant relationship between out-of-fit cross-validation accuracy and sample size (R2 = 0.06, p = 0.33), highlighting the relatively broad taxonomic coverage for each trait (Fig. 1, Supplementary Fig. 1).

Environmental variables and phylogenetic information had approximately equal explanatory power (relative importance of 0.51 vs 0.49 for environment vs. phylogeny), albeit with substantial variation across traits (Supplementary Fig. 9). The inclusion of environmental variables increased the explanatory power of the models by 35%, on average (Supplementary Fig. 6), with crown diameter, crown height, leaf density, and stem diameter exhibiting the largest relative increases (54%, 45%, 73%, and 26%, respectively), mirroring the fact that these traits have comparatively low phylogenetic signal relative to other traits (assessed via Pagel’s λ on the raw data, Fig. 4c). Seed dry mass was the only trait with a substantial increase in accuracy using the phylogeny-only model (25% improvement; Supplementary Fig. 6), reflecting the fact that seed dry mass had the strongest phylogenetic signal of all traits (Fig. 4c), and also because this trait has a substantial amount of additional non-georeferenced data that was included in the phylogeny-only models (Fig. 1b). Wood density was the only trait with nearly identical predictive power whether or not environmental information was included, whereas all other traits exhibited significantly reduced accuracy when environmental information was excluded (Supplementary Fig. 6).

Relationships in tree trait expression

Using the resulting trait models, we imputed missing trait values for every tree with at least one georeferenced trait measurement. For all traits except seed dry mass, we used the random-forest models accounting for environmental and phylogenetic information; for seed dry mass, we used the phylogeny-only model to estimate expression due to its substantially higher data availability and out-of-fit accuracy. For tree height, stem diameter, crown height, crown width, and root depth, we used quantile random forest48 to estimate the upper 90th percentile value for each species in its given location, thereby minimizing ontogenetic variation across a tree’s lifetime (see Methods). We used the resulting trait data to explore the dominant drivers of trait variation using species-weighted principal component analysis, accounting for an unequal number of observations across species.

When considering all traits simultaneously, the first two axes of the resulting principal components (PC) capture 41% of the variation in overall trait expression (Fig. 2a; Supplementary Fig. 10; Supplementary Table 5). The first trait axis correlates most strongly with leaf thickness, specific leaf area, and leaf nitrogen (PC loadings of L = 0.77, 0.74, and 0.73, respectively). By capturing key aspects of the leaf-economic spectrum14, these traits reflect various physiological controls on leaf-level resource processing, tissue turnover and photosynthetic rates49. Thick leaves with low specific leaf area (SLA) can help minimize desiccation, frost damage, and nutrient limitation, but at the cost of reduced photosynthetic potential due to primary investment in structural resistance50. Accordingly, leaf nitrogen—a crucial component of Rubisco for photosynthesis51—trades off strongly with leaf thickness. This first axis thus captures the core distinction between “acquisitive” (fast) and “conservative” (slow) life-history strategies across the plant kingdom7,52, reflecting an organismal-level trade-off between the high photosynthetic potential in optimal conditions versus abiotic tolerance in suboptimal conditions. Nevertheless, leaf density—which is related to SLA and is a key feature of the leaf-economic spectrum—loads relatively weakly on this first trait axis compared to other leaf traits (L = −0.28 for axis 1, vs 0.20 for axis 2; Supplementary Table 5), highlighting important aspects of leaf structure that are not captured by this dominant trait axis53.

Fig. 2: The dominant trait axes and relationships.

Shown are the first two principal component axes capturing trait relationships across the 18 functional traits. a All tree species (n = 30,146 observations), b angiosperms only (n = 24,658), and c gymnosperms only (n = 5498). In a the three variables that load most strongly on each axis are shown in dark black lines, with the remaining variables shown in light grey. These same six variables are highlighted in b and c illustrating how the same relationships extend to angiosperms and gymnosperms (see Supplementary Figs. 10–12 for the full PCAs with all traits visible, and Supplementary Table 5 for the PC loadings).

Full size image

The second trait axis correlates most strongly with maximum tree height (PC loading of L = 0.77), crown height, (L = 0.75), and crown diameter (L = 0.88), highlighting the overarching importance of competition for light and canopy position in forests7 (Fig. 2a; Supplementary Fig. 10; Supplementary Table 5). Large trees and large crowns are critical for light access and for maximizing light interception down through the canopy54. Nevertheless, tall trees with deep crowns also experience greater susceptibility to disturbance and mechanical damage, primarily due to wind and weight25. Because of the massive carbon and nutrient costs required to create large woody structures55,56, larger trees are less viable in nutrient-limited or colder climates57, and in exposed areas with high winds or extreme weather events58. This second axis thus reflects a fundamental biotic/abiotic trade-off related to overall tree size, which is largely orthogonal to leaf-level nutrient-use and photosynthetic capacity.

Despite substantial differences in wood and leaf structures between angiosperms and gymnosperms (e.g. vessels vs. tracheids), the two main relationships hold within, as well as across, angiosperms and gymnosperms (Fig. 2b, c; Supplementary Figs. 11, 12). Indeed, angiosperms and gymnosperms are subject to the same physical, mechanical, and chemical processes that determine the ability to withstand various biotic and abiotic pressures59.

Collectively, these two primary trait axes capture two dominant ecological trade-offs that underpin tree survival in any given environment: (1) the ability to maximize leaf photosynthetic activity, at the cost of increased risk of leaf desiccation, and (2) the ability to compete for space and maximize light interception, at the cost of increased susceptibility to mechanical damage. By capturing two aspects of conservative-acquisitive life-history strategies, these two relationships closely mirror those seen when considering herbaceous species alongside woody species5,17. However, in line with our expectations, these two axes capture only ~40% of the variation in trait space, versus nearly ~75% of variation when considering only six traits across the entire plant kingdom5. Here, the first seven PC axes are needed to account for 75% of the variation across all 18 traits (Supplementary Table 5). Thus, while this analysis supports the universality of these two primary PC axes, it also demonstrates that the majority of trait variation in trees is unexplained by these two dimensions. As such, quantifying the full dimensionality of trait space by exploring multidimensional trait clusters is needed to better capture the wide breadth of tree form and function.

Environmental predictors of trait relationships

To examine how environmental variation shapes trait expression across the globe, we next quantified the relationships between environmental conditions and the dominant trait axes. Using Shapley values60, we partitioned the relative influence of each environmental variable on the PC trait axes, controlling for all other variables in the model (see Methods).

In line with previous analysis across the plant kingdom61, temperature variables were the strongest drivers of trait relationships (Fig. 3, Supplementary Figs. 17, 18), with annual temperature having the strongest influence both on leaf-economic traits (PC axis 1, Fig. 3c) and on tree-size traits (PC axis 2, Fig. 3d). Leaves face increased frost risk and reduced photosynthetic potential in colder conditions, such that ecological selection should favour thick leaves with low SLA over thin leaves with high SLA and high nutrient-use49. Trees in warm environments are more likely to experience strong biotic interactions, which should increase evolutionary and ecological selection pressures over time62,63, favouring tall species with large crowns that have high competitive ability and efficient light acquisition strategies. Annual temperature thus predominantly reflects the transition from gymnosperm- to angiosperm-dominated ecosystems, with this inflection point occurring at ~15 °C for both axes, demonstrating strong environmental convergence between the dominant axes of trait variation.

Fig. 3: The relationship between environmental variables and trait axes.

a, b The relative influence of the environmental variables on the two dominant PC axes. The ten variables are sorted by overall variable importance in the models (see Methods). Yellow points are observations which have high values of that environmental variable; blue values are the lowest. Points to the right of zero indicate a positive influence on the PC axis; points to the left indicate a negative influence (see also Supplementary Figs. 17, 18). ch The relationships between environmental variables and PC axis values for the three variables in a with the strongest influence. Values above zero show a positive influence on PC axis values; values less than zero indicate a negative influence.

Full size image

Beyond annual temperature, each trait axis demonstrated different relationships with climate, soil, and topographic variables (Fig. 3a, b, Supplementary Figs. 17, 18). Percent sand content had the second-highest influence on the first trait axis (Fig. 3e), supporting patterns seen across the entire plant kingdom17. Sand content is a strong proxy for soil moisture and soil-available nutrients such as phosphorous, and is therefore closely tied to leaf photosynthetic rates64. In contrast to previous work, however, we find that soil characteristics have correspondingly little effect on the second axis of trait variation (Fig. 3b; Supplementary Fig. 18). Instead, precipitation was the second strongest driver of tree height and crown size (Fig. 3f), with large trees with large crowns becoming consistently more frequent with increasing precipitation. These results highlight that, despite the primary importance of temperature, the main climate stressors to trees (e.g. xylem cavitation and embolism, fire regimes, and leaf desiccation) typically arise via interactions between temperature, soil nutrients, and water availability.

For both axes, elevation was the third strongest driver of trait values (Fig. 3g, h), highlighting a critical component of tree functional biogeography that extends beyond climate and soil. Yet the effects of elevation on trait expression differed somewhat across the two axes. For the first axis related to leaf-economic traits, there is little influence at low elevations, followed by a sharp transition at ~2000 m towards gymnosperm-dominated species with thick leaves, low SLA, and low leaf N. For the second trait axis related to tree size, elevation instead has a strong positive influence on tree height and crown size at low elevations, which becomes increasingly less influential past ~500 m. Such results partly reflect the transition from angiosperm to gymnosperm-dominated stands at higher elevations (blue vs. red points, Fig. 3g, h), and potentially the role of environmentally mediated intraspecific variation in traits such as tree height65,66.

These results demonstrate close alignment of the dominant trait PC axes across biogeographic regions. Despite the orthogonality of these axes in trait species, environmental conditions place similar constraints on both trait axes, particularly at the environmental extremes (e.g. warm, moist, low elevation vs. cold, dry, high elevation), leading to convergence of the dominant trait axes across environmental gradients.

Trait clusters at the global scale

To better explore the multidimensional nature of trait relationships that are not fully covered by the dominant two axes, we subsequently identified groups of traits that form tightly coupled clusters and which reflect distinct aspects of tree form and function.

Our results show that these 18 traits can be grouped into eight trait clusters, each of which reflects a unique aspect of morphology, physiology, or ecology (Fig. 4a, Supplementary Fig. 23). The largest trait cluster (Fig. 4a, pink cluster) demonstrates wood/leaf integration of moisture regulation and photosynthetic activity via the inclusion of leaf area, stem conduit diameter, stomatal conductance, and leaf Vcmax (the maximum rate of carboxylation). Distinct from this cluster are the three traits loading most strongly on PC axis 1 (SLA, leaf thickness and leaf N; Fig. 4a, yellow), highlighting complementary aspects of the leaf-economic spectrum indicative of acquisitive vs. conservative resource use15. The role of leaf K and P in leaf nutrient economies are well established7,67, and yet these traits form a distinct cluster from the other leaf-economic traits (Fig. 4a, light blue) due to their relatively high correlation with tree height and crown size, particularly for leaf K, which loads almost equally on both trait axes (Fig. 4b, Supplementary Table 5).

Fig. 4: Trait correlations and functional clusters.

a Trait clusters with high average intra-group correlation. The upper triangle gives the species-weighted correlations incorporating intraspecific variation. The lower triangle gives the corresponding correlations among phylogenetic independent contrasts, which adjusts for pseudo-replication due to the non-independence of closely related species. The size of the circle denotes the relative strength of the correlation, with solid circles denoting positive correlations and open circles denoting negative correlations (see Supplementary Fig. 19 for the numeric values). b PC loadings for each trait and each of the first two principal component axes, illustrating which functional trait clusters align most strongly with the dominant axes of trait variation (see Supplementary Table 5 for the full set of PC loadings). c The species-level phylogenetic signal of each trait (Pagel’s λ), calculated using only the raw trait values.

Full size image

Tree height and crown size form their own distinct cluster (Fig. 4a, dark green), further supporting the inference that these traits reflect key aspects of tree form and function independent of the leaf-economic spectrum. Yet leaf area, despite being part of the cluster reflecting moisture regulation and photosynthetic activity, loads almost equally on PC axes 1 and 2 (Fig. 4b, Supplementary Table 5), highlighting that it serves as an intermediary between the two key aspects of tree size and leaf economics. It is a critical driver of moisture regulation and photosynthetic capacity, while also playing an important role in the light acquisition, leaf-turnover time, and competitive ability54,68.

There are two additional two-trait clusters, both of which load relatively poorly on the two primary PC axes: (1) stem diameter and bark thickness (Fig. 4, dark blue), and (2) wood and leaf density (Fig. 4, light green). Bark thickness increases with tree size not only as a result of bark accumulation as trees age, but also due to the functional/metabolic needs of the plant69,70. From an ecological perspective, thick bark can be critical for defense against fire and pest damage (mainly a thick outer bark region), for storage and photosynthate transportation needs (mainly a thick inner bark region)71,72. Yet such relationships are strongly ecosystem-dependent, with tree size emerging as the dominant driver at the global scale70. In contrast, wood density and leaf density are strongly linked to slow/fast life-history strategies, where denser plant parts reduce growth rate and water transport6,15 but protect against pest damage, desiccation, and mechanical breakage6,50,56. As such, leaf density captures fundamentally unique aspects of leaf form and function relative to other leaf traits such as SLA53 (Fig. 4b, Supplementary Table 5), and our results support the inference that these translate into fundamentally different ecological strategies73. Collectively, these two-trait clusters each demonstrate unique and complementary mechanisms that insulate trees against various disturbances and extreme weather events, but at the cost of reduced growth, competitive ability, and productivity under optimal conditions (see Supplementary Notes).

Lastly, two traits each comprise their own unique cluster: root depth and seed dry mass (Fig. 4a, purple and orange, respectively). Root growth is subject to a range of belowground processes (e.g. root herbivory, depth to bedrock), and our results confirm previous work demonstrating a clear disconnect between aboveground and belowground traits23,74,75. Root depth accordingly has a relatively weak phylogenetic signal (λ = 0.44, Fig. 4c) but a strong environmental signal (Supplementary Figs. 6, 9), reflecting distinct belowground constraints on trait expression23. In contrast, seed dry mass exhibits the strongest phylogenetic signal (λ = 0.98, Fig. 4c) and weakest environmental signal of any trait (Supplementary Figs. 6, 9), and it accordingly was the only trait where the phylogeny-only model performed substantially better (Supplementary Fig. 6). In line with previous work, seed dry mass has moderate correlations with various other traits underpinning leaf economics and tree size5,28 (e.g. ρ = 0.28, −0.22, and 0.22 for tree height, leaf K, and leaf density, using the raw data), yet it exhibits relatively weak correlation with most other traits, placing it in a distinct functional cluster. Reproductive traits are subject to unique evolutionary pressures26, indicative of different seed dispersal vectors (wind, water, animals) and various ecological stressors that uniquely affect seed viability and germination26. The emergence of root depth and seed dry mass as solo functional clusters thus supports the previous inference that belowground traits74 and reproductive traits26 reflect distinct aspects of tree form and function not fully captured by leaf or wood trait spectrums.


Source: Ecology - nature.com

Study finds natural sources of air pollution exceed air quality guidelines in many regions

Viral infection changes the expression of personality traits in an insect species reared for consumption