in

Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).

    CAS 
    Article 

    Google Scholar 

  • Abatzoglou, J. T., Williams, A., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    ADS 
    Article 

    Google Scholar 

  • Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).

    ADS 
    Article 

    Google Scholar 

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • IPCC In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).

    Google Scholar 

  • Dupuy, J. et al. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 77, 35 (2020).

    Article 

    Google Scholar 

  • Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 1–9 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moreira, F. et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 15, 011001 (2020).

    ADS 
    Article 

    Google Scholar 

  • Di Giuseppe, F. et al. Fire Weather Index: The skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci. 20, 2365–2378 (2020).

    ADS 
    Article 

    Google Scholar 

  • Van Wagner, C. E. Development and structure of the Canadian forest fireweather index system. Canadian Forestry Service, Forestry Technical Report 35 (1987).

  • de Groot, W. J. et al. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strat. Global Change. 12, 165–180 (2007).

    Article 

    Google Scholar 

  • Venäläinen, A. et al. Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat. Hazards Earth Syst. Sci. 14, 1477–1490 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article 

    Google Scholar 

  • Abatzoglou, J. T. et al. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    ADS 
    Article 

    Google Scholar 

  • Jain, P. et al. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    ADS 
    Article 

    Google Scholar 

  • Calheiros, T. et al. Recent evolution of spatial and temporal patterns of burnt areas and fire weather risk in the Iberian Peninsula. Agr. For. Meteorol. 287, 107923 (2020).

    Article 

    Google Scholar 

  • Abatzoglou, J. T. et al. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).

    ADS 

    Google Scholar 

  • Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Peuch, V. H. et al. The use of satellite data in the Copernicus atmosphere monitoring service. In IEEE International Geoscience and Remote Sensing Symposium (ed Moreno, J.) 1594–1596 (IEEE, 2018).

  • Carnicer, J. et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 25, 2825–2840 (2019).

    ADS 
    Article 

    Google Scholar 

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Fut. 7, 892–910 (2019).

    ADS 
    Article 

    Google Scholar 

  • Rogers, B. M. et al. Focus on changing fire regimes: Interactions with climate, ecosystems, and society. Environ. Res. Lett. 15, 030201 (2020).

    ADS 
    Article 

    Google Scholar 

  • Duane, A. et al. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 1–21 (2021).

    ADS 
    Article 

    Google Scholar 

  • Ellis, T. M. et al. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).

    Article 

    Google Scholar 

  • Grassi, G. et al. On the realistic contribution of European forests to reach climate objectives. Carbon Balance Manag. 14, 1–5 (2019).

    CAS 
    Article 

    Google Scholar 

  • Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. & Grassi, G. The European forest Carbon budget under future climate conditions and current management practices. Biogeosci. Discuss. 1, 33 (2022).

    Google Scholar 

  • Migliavacca, M. et al. Modeling biomass burning and related carbon emissions during the 21st century in Europe. J. Geophys. Res. Biogeosci. 118, 1732–1747 (2013).

    CAS 
    Article 

    Google Scholar 

  • Resco de Dios, V. et al. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Sci. Total Environ. 797, 149104 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).

    Article 

    Google Scholar 

  • Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Forzieri, G. et al. Vulnerability of European forests to climate risks. Geophys. Res. Abstr. 21, 1 (2019).

    Google Scholar 

  • Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Article 

    Google Scholar 

  • Carnicer, J. et al. Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. J. Ecol. 109, 3322–3339 (2021).

    Article 

    Google Scholar 

  • Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24, 1108–1122 (2018).

    ADS 
    Article 

    Google Scholar 

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, H. et al. Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation. Environ. Res. Lett. 14, 104009 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bednar-Friedl, B. et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC-WMO.

  • Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 484 (2017).

    Article 

    Google Scholar 

  • Vizzarri, M., Pilli, R., Korosuo, A., Frate, L. & Grassi, G. The role of forests in climate change mitigation: The EU context. In Climate-Smart Forestry in Mountain Regions (eds Tognetti, R. et al.) 507–520 (Springer, 2022).

    Chapter 

    Google Scholar 

  • Tognetti, R., Smith, M. & Panzacchi, P. Climate-Smart Forestry in Mountain Regions 574 (Springer, 2022).

    Book 

    Google Scholar 

  • Ali, E. et al. Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC-WMO.

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press) (in press).

  • Boer, M. M. et al. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Fut. 5, 1196–1202 (2017).

    ADS 
    Article 

    Google Scholar 

  • Drobyshev, I. et al. Trends and patterns in annually burned forest areas and fire weather across the European boreal zone in the 20th and early 21st centuries. Agric. For. Meteorol. 306, 108467 (2021).

    ADS 
    Article 

    Google Scholar 

  • Chen, Y., Morton, D. C., Andela, N., Giglio, L. & Randerson, J. T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environ. Res. Lett. 11, 045001 (2016).

    ADS 
    Article 

    Google Scholar 

  • McCarty, J. L., Smith, T. E. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Witze, A. The Arctic is burning like never before—And that’s bad news for climate change. Nature 585, 336–338 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, T., McCarty, J., Turetsky, M. & Parrington, M. Geospatial analysis of Arctic fires in the MODIS era: 2003–2020. In EGU General Assembly Conference Abstracts (2021).

  • Lehtonen, I., Venäläinen, A., Kämäräinen, M., Peltola, H. & Gregow, H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat. Hazards Earth Syst. Sci. 16, 239–253 (2016).

    ADS 
    Article 

    Google Scholar 

  • Fernandes, P. M., Pereira Pacheco, A., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).

    Article 

    Google Scholar 

  • Vitolo, C. et al. ERA5-based global meteorological wildfire danger maps. Sci. Data 7, 216 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • San-Miguel-Ayanz, M. et al. In Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS) (ed. Tiefenbacher, J.) 87–108 (InTech, Croatia, 2012).

    Google Scholar 

  • Harvey, D. A., Alexander, M. E. & Janz, B. A comparison of fire-weather severity in northern Alberta during the 1980 and 1981 fire seasons. For. Chron. 62, 507–513 (1986).

    Article 

    Google Scholar 

  • Copernicus Climate Change Service. Fire Danger Indicators for Europe from 1970 to 2098 Derived from Climate Projections (2020). https://doi.org/10.24381/CDS.CA755DE7.

  • Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Change 134, 59–71 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fargeon, H. et al. Projections of fire danger under climate change over France: Where do the greatest uncertainties lie?. Clim. Change 160, 479–493 (2020).

    ADS 
    Article 

    Google Scholar 

  • Rovithakis, A. et al. Future climate change impact on wildfire danger over the Mediterranean: The case of Greece. Environ. Res. Lett. 17, 045022 (2022).

    ADS 
    Article 

    Google Scholar 

  • Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Combining host and vector data informs emergence and potential impact of an Usutu virus outbreak in UK wild birds

    Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe