World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization. 2014. https://www.who.int/publications/i/item/9789241564748.
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom. 2016. https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf.
UN Environment. Frontiers 2017: emerging Issues of environmental concern. United Nations Environment Programme. 2017. https://wedocs.unep.org/20.500.11822/22255.
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.
Google Scholar
D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.
Google Scholar
Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14:176–82.
Google Scholar
Wang F, Fu Y-H, Sheng H-J, Topp E, Jiang X, Zhu Y-G, et al. Antibiotic resistance in the soil ecosystem: a one health perspective. Curr Opin Environ Sci Health. 2021;20:100230.
Google Scholar
Zhang F, Zhao X, Li Q, Liu J, Ding J, Wu H, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil. Environ Sci Pollut Res. 2018;25:9547–55.
Google Scholar
Seiler C, Berendonk T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:399.
Google Scholar
Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater. 2012;235-236:178–85.
Google Scholar
Komijani M, Shamabadi NS, Shahin K, Eghbalpour F, Tahsili MR, Bahram M. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environ Pollut. 2021;274:116569.
Google Scholar
Zhao Y, Cocerva T, Cox S, Tardif S, Su J-Q, Zhu Y-G, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ. 2019;656:512–20.
Google Scholar
Bhattacharyya A, Haldar A, Bhattacharyya M, Ghosh A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci Total Environ. 2019;647:1626–39.
Google Scholar
Bridge G. Contested terrain: mining and the environment. Annu Rev Environ Resour. 2004;29:205–59.
Google Scholar
Liu J-L, Yao J, Zhu X, Zhou D-L, Duran R, Mihucz VG, et al. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environ Pollut. 2021;273:115667.
Google Scholar
Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44:139–52.
Google Scholar
Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 2008;116:278–83.
Google Scholar
Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol. 2019;10:338.
Google Scholar
Hu H-W, Wang J-T, Li J, Li J-J, Ma Y-B, Chen D, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol. 2016;18:3896–909.
Google Scholar
Huang L-N, Zhou W-H, Hallberg Kevin B, Wan C-Y, Li J, Shu W-S. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol. 2011;77:5540–44.
Google Scholar
Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Šimatović A, Senta I, et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ Int. 2019;123:501–11.
Google Scholar
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.
Google Scholar
Yang T-T, Liu J, Chen W-C, Chen X, Shu H-Y, Jia P, et al. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings. Soil Biol Biochem. 2017;114:52–58.
Google Scholar
Zhao L, Anderson CW, Qiu G, Meng B, Wang D, Feng X. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences. 2016;13:2429–40.
Google Scholar
Liang J-L, Liu J, Jia P, Yang T-T, Zeng Q-W, Zhang S-C, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–76.
Google Scholar
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
Google Scholar
Lu YY, Chen T, Fuhrman JA, Sun F. COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics. 2017;33:791–98.
Google Scholar
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
Google Scholar
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
Google Scholar
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Google Scholar
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012;28:2223–30.
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–59.
Google Scholar
Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23.
Google Scholar
Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020;48:D561–69.
Google Scholar
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.
Google Scholar
Martin C, Stebbins B, Ajmani A, Comendul A, Hamner S, Hasan NA, et al. Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and heavy metal resistome in wastewater. Ecotoxicology. 2021;30:1572–85.
Google Scholar
Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–36.
Google Scholar
Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009;25:1096–98.
Google Scholar
Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA. 2019;10:40.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Google Scholar
Chakraborty J, Sapkale V, Rajput V, Shah M, Kamble S, Dharne M. Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Ecotoxicol Environ Saf. 2020;194:110443.
Google Scholar
Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014. The 9th Annual Genomics of Energy & Environment Meeting. US. https://www.osti.gov/servlets/purl/1241166.
Ma L, Xia Y, Li B, Yang Y, Li L-G, Tiedje JM, et al. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ Sci Technol. 2016;50:420–7.
Google Scholar
Li L-G, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 2017;11:651–62.
Google Scholar
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.
Google Scholar
Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–78.
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
Google Scholar
Littman RA, Fiorenza EA, Wenger AS, Berry KL, van de Water JA, Nguyen L, et al. Coastal urbanization influences human pathogens and microdebris contamination in seafood. Sci Total Environ. 2020;736:139081.
Google Scholar
Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-integrase gene–a promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ Int. 2020;135:105372.
Google Scholar
Tasker S, Caney SM, Day MJ, Dean RS, Helps CR, Knowles TG, et al. Effect of chronic FIV infection, and efficacy of marbofloxacin treatment, on Mycoplasma haemofelis infection. Vet Microbiol. 2006;117:169–79.
Google Scholar
Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191:261–77.
Google Scholar
Moebius N, Ross C, Scherlach K, Rohm B, Roth M, Hertweck C. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli. Chem Biol. 2012;19:1164–74.
Google Scholar
Stryjewski ME, LiPuma JJ, Messier RH Jr, Reller LB, Alexander BD. Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J Clin Microbiol. 2003;41:2255–57.
Google Scholar
Anaissie E, Fainstein V, Miller P, Kassamali H, Pitlik S, Bodey GP, et al. Pseudomonas putida: newly recognized pathogen in patients with cancer. Am J Med. 1987;82:1191–94.
Google Scholar
Hinse D, Vollmer T, Rückert C, Blom J, Kalinowski J, Knabbe C, et al. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis. BMC Genom. 2011;12:400.
Google Scholar
Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis. 2009;9:312–23.
Google Scholar
de Nies L, Lopes S, Busi SB, Galata V, Heintz-Buschart A, Laczny CC, et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome. 2021;9:49.
Google Scholar
Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019;10:1124.
Google Scholar
Rodriguez-R LM, Konstantinidis KT. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics. 2014;30:629–35.
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Vegan: community ecology package. R package version 2.5-7. 2013. http://CRAN.R-project.org/package=vegan.
Hijmans RJ. geosphere: spherical trigonometry. R package version 1.5-10. 2019. https://CRAN.R-project.org/package=geosphere.
Wickham H. ggplot2: elegant graphics for data analysis. R package version 3.3.2. 2016. https://CRAN.R-project.org/package=ggplot2.
Larsson J, Godfrey AJR, Gustafsson P, Eberly DH, Huber E, Slowikowski K, et al. Eulerr: area-proportional Euler and Venn diagrams with ellipses. R package version 6.1.0. 2018. https://CRAN.R-project.org/package=eulerr.
Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, et al. rgdal: Bindings for the ‘Geospatial’ data abstraction library. R package version 1.5.18. 2015. https://CRAN.R-project.org/package=rgdal.
Brownrigg R, McIlroy D, Minka TP, Bivand R. mapproj: Map projections. R package version 1.2.7. 2020. https://CRAN.R-project.org/package=mapproj.
Bivand R, Lewin-Koh N, Pebesma E, Archer E, Baddeley A, Bearman N, et al. maptools: Tools for handling spatial objects. R package version 0.9-9. 2020. https://CRAN.R-project.org/package=maptools.
Rice EW, Wang P, Smith AL, Stadler LB. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett. 2020;7:282–91.
Google Scholar
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–16.
Google Scholar
Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.
Google Scholar
Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019;13:346–60.
Google Scholar
Chen Q-L, An X-L, Zheng B-X, Gillings M, Peñuelas J, Cui L, et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol Lett. 2019;1:3–13.
Google Scholar
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.
Google Scholar
Karkman A, Pärnänen K, Larsson DJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10:80.
Google Scholar
Cao J, Yang G, Mai Q, Zhuang Z, Zhuang L. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to as (III) contamination with an emphasis on potential pathogens. Sci Total Environ. 2020;725:138367.
Google Scholar
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015;16:964.
Google Scholar
Teare MD, Barrett JH. Genetic linkage studies. Lancet. 2005;366:1036–44.
Google Scholar
Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A, et al. Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ. 2019;6:e6258.
Google Scholar
Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin J-G, et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ Int. 2019;129:208–20.
Google Scholar
Fresia P, Antelo V, Salazar C, Giménez M, D’Alessandro B, Afshinnekoo E, et al. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome. 2019;7:35.
Google Scholar
Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.
Google Scholar
Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.
Google Scholar
Williams AB. In: Kovalchuk I, Kovalchuk O, editors. Genome stability. Boston: Academic Press; 2016. p. 69–85.
Cury J, Touchon M, Rocha EP. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res. 2017;45:8943–56.
Google Scholar
Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2018;47:D660–65.
Google Scholar
Su J-Q, An X-L, Li B, Chen Q-L, Gillings MR, Chen H, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome. 2017;5:84.
Google Scholar
Zhao R, Feng J, Yin X, Liu J, Fu W, Berendonk TU, et al. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 2018;134:126–39.
Google Scholar
Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.
Google Scholar
Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9:2490–502.
Google Scholar
Zhao X, Li X, Li Y, Sun Y, Zhang X, Weng L, et al. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation. Biotechnol Biofuels. 2019;12:160.
Google Scholar
Khelaifia S, Drancourt M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect. 2012;18:841–48.
Google Scholar
Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ. 2017;5:e3865.
Google Scholar
Cangelosi GA, Freitag NE, Buckley M. From outside to inside: environmental microorganisms as human pathogens. 2005. https://www.asmscience.org/content/report/colloquia/colloquia.14
Molina L, Ramos C, Duque E, Ronchel MC, Garcı́a JM, Wyke L, et al. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem. 2000;32:315–21.
Google Scholar
Furlan JPR, Pitondo-Silva A, Stehling EG. Detection of blaNDM-1 in Stenotrophomonas maltophilia isolated from Brazilian soil. Mem Inst Oswaldo Cruz. 2018;113:e170558.
Google Scholar
Gao J, Li B-Y, Wang H-H, Liu Z-Q. Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Curr Microbiol. 2014;69:19–24.
Google Scholar
Green SK, Schroth MN, Cho JJ, Kominos SD, Vitanza-Jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol. 1974;28:987–91.
Google Scholar
Source: Ecology - nature.com