in

Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes

  • World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization. 2014. https://www.who.int/publications/i/item/9789241564748.

  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom. 2016. https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf.

  • UN Environment. Frontiers 2017: emerging Issues of environmental concern. United Nations Environment Programme. 2017. https://wedocs.unep.org/20.500.11822/22255.

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14:176–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang F, Fu Y-H, Sheng H-J, Topp E, Jiang X, Zhu Y-G, et al. Antibiotic resistance in the soil ecosystem: a one health perspective. Curr Opin Environ Sci Health. 2021;20:100230.

    Article 

    Google Scholar 

  • Zhang F, Zhao X, Li Q, Liu J, Ding J, Wu H, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil. Environ Sci Pollut Res. 2018;25:9547–55.

    CAS 
    Article 

    Google Scholar 

  • Seiler C, Berendonk T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:399.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater. 2012;235-236:178–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Komijani M, Shamabadi NS, Shahin K, Eghbalpour F, Tahsili MR, Bahram M. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environ Pollut. 2021;274:116569.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhao Y, Cocerva T, Cox S, Tardif S, Su J-Q, Zhu Y-G, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ. 2019;656:512–20.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bhattacharyya A, Haldar A, Bhattacharyya M, Ghosh A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci Total Environ. 2019;647:1626–39.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bridge G. Contested terrain: mining and the environment. Annu Rev Environ Resour. 2004;29:205–59.

    Article 

    Google Scholar 

  • Liu J-L, Yao J, Zhu X, Zhou D-L, Duran R, Mihucz VG, et al. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environ Pollut. 2021;273:115667.

    CAS 
    Article 

    Google Scholar 

  • Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44:139–52.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 2008;116:278–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol. 2019;10:338.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu H-W, Wang J-T, Li J, Li J-J, Ma Y-B, Chen D, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol. 2016;18:3896–909.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang L-N, Zhou W-H, Hallberg Kevin B, Wan C-Y, Li J, Shu W-S. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol. 2011;77:5540–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Šimatović A, Senta I, et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ Int. 2019;123:501–11.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

    PubMed 
    Article 

    Google Scholar 

  • Yang T-T, Liu J, Chen W-C, Chen X, Shu H-Y, Jia P, et al. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings. Soil Biol Biochem. 2017;114:52–58.

    CAS 
    Article 

    Google Scholar 

  • Zhao L, Anderson CW, Qiu G, Meng B, Wang D, Feng X. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences. 2016;13:2429–40.

    CAS 
    Article 

    Google Scholar 

  • Liang J-L, Liu J, Jia P, Yang T-T, Zeng Q-W, Zhang S-C, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu YY, Chen T, Fuhrman JA, Sun F. COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics. 2017;33:791–98.

    CAS 
    PubMed 

    Google Scholar 

  • Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012;28:2223–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–59.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020;48:D561–69.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin C, Stebbins B, Ajmani A, Comendul A, Hamner S, Hasan NA, et al. Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and heavy metal resistome in wastewater. Ecotoxicology. 2021;30:1572–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–36.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009;25:1096–98.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA. 2019;10:40.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chakraborty J, Sapkale V, Rajput V, Shah M, Kamble S, Dharne M. Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Ecotoxicol Environ Saf. 2020;194:110443.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014. The 9th Annual Genomics of Energy & Environment Meeting. US. https://www.osti.gov/servlets/purl/1241166.

  • Ma L, Xia Y, Li B, Yang Y, Li L-G, Tiedje JM, et al. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ Sci Technol. 2016;50:420–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li L-G, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 2017;11:651–62.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Littman RA, Fiorenza EA, Wenger AS, Berry KL, van de Water JA, Nguyen L, et al. Coastal urbanization influences human pathogens and microdebris contamination in seafood. Sci Total Environ. 2020;736:139081.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-integrase gene–a promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ Int. 2020;135:105372.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tasker S, Caney SM, Day MJ, Dean RS, Helps CR, Knowles TG, et al. Effect of chronic FIV infection, and efficacy of marbofloxacin treatment, on Mycoplasma haemofelis infection. Vet Microbiol. 2006;117:169–79.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191:261–77.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moebius N, Ross C, Scherlach K, Rohm B, Roth M, Hertweck C. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli. Chem Biol. 2012;19:1164–74.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stryjewski ME, LiPuma JJ, Messier RH Jr, Reller LB, Alexander BD. Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J Clin Microbiol. 2003;41:2255–57.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anaissie E, Fainstein V, Miller P, Kassamali H, Pitlik S, Bodey GP, et al. Pseudomonas putida: newly recognized pathogen in patients with cancer. Am J Med. 1987;82:1191–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hinse D, Vollmer T, Rückert C, Blom J, Kalinowski J, Knabbe C, et al. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis. BMC Genom. 2011;12:400.

    CAS 
    Article 

    Google Scholar 

  • Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis. 2009;9:312–23.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • de Nies L, Lopes S, Busi SB, Galata V, Heintz-Buschart A, Laczny CC, et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome. 2021;9:49.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019;10:1124.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics. 2014;30:629–35.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Vegan: community ecology package. R package version 2.5-7. 2013. http://CRAN.R-project.org/package=vegan.

  • Hijmans RJ. geosphere: spherical trigonometry. R package version 1.5-10. 2019. https://CRAN.R-project.org/package=geosphere.

  • Wickham H. ggplot2: elegant graphics for data analysis. R package version 3.3.2. 2016. https://CRAN.R-project.org/package=ggplot2.

  • Larsson J, Godfrey AJR, Gustafsson P, Eberly DH, Huber E, Slowikowski K, et al. Eulerr: area-proportional Euler and Venn diagrams with ellipses. R package version 6.1.0. 2018. https://CRAN.R-project.org/package=eulerr.

  • Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, et al. rgdal: Bindings for the ‘Geospatial’ data abstraction library. R package version 1.5.18. 2015. https://CRAN.R-project.org/package=rgdal.

  • Brownrigg R, McIlroy D, Minka TP, Bivand R. mapproj: Map projections. R package version 1.2.7. 2020. https://CRAN.R-project.org/package=mapproj.

  • Bivand R, Lewin-Koh N, Pebesma E, Archer E, Baddeley A, Bearman N, et al. maptools: Tools for handling spatial objects. R package version 0.9-9. 2020. https://CRAN.R-project.org/package=maptools.

  • Rice EW, Wang P, Smith AL, Stadler LB. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett. 2020;7:282–91.

    CAS 
    Article 

    Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019;13:346–60.

    PubMed 
    Article 

    Google Scholar 

  • Chen Q-L, An X-L, Zheng B-X, Gillings M, Peñuelas J, Cui L, et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol Lett. 2019;1:3–13.

    Article 

    Google Scholar 

  • Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karkman A, Pärnänen K, Larsson DJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10:80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cao J, Yang G, Mai Q, Zhuang Z, Zhuang L. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to as (III) contamination with an emphasis on potential pathogens. Sci Total Environ. 2020;725:138367.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015;16:964.

    Article 
    CAS 

    Google Scholar 

  • Teare MD, Barrett JH. Genetic linkage studies. Lancet. 2005;366:1036–44.

    CAS 
    Article 

    Google Scholar 

  • Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A, et al. Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ. 2019;6:e6258.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin J-G, et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ Int. 2019;129:208–20.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fresia P, Antelo V, Salazar C, Giménez M, D’Alessandro B, Afshinnekoo E, et al. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome. 2019;7:35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Williams AB. In: Kovalchuk I, Kovalchuk O, editors. Genome stability. Boston: Academic Press; 2016. p. 69–85.

  • Cury J, Touchon M, Rocha EP. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res. 2017;45:8943–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2018;47:D660–65.

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Su J-Q, An X-L, Li B, Chen Q-L, Gillings MR, Chen H, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome. 2017;5:84.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao R, Feng J, Yin X, Liu J, Fu W, Berendonk TU, et al. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 2018;134:126–39.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9:2490–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao X, Li X, Li Y, Sun Y, Zhang X, Weng L, et al. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation. Biotechnol Biofuels. 2019;12:160.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Khelaifia S, Drancourt M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect. 2012;18:841–48.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ. 2017;5:e3865.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cangelosi GA, Freitag NE, Buckley M. From outside to inside: environmental microorganisms as human pathogens. 2005. https://www.asmscience.org/content/report/colloquia/colloquia.14

  • Molina L, Ramos C, Duque E, Ronchel MC, Garcı́a JM, Wyke L, et al. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem. 2000;32:315–21.

    CAS 
    Article 

    Google Scholar 

  • Furlan JPR, Pitondo-Silva A, Stehling EG. Detection of blaNDM-1 in Stenotrophomonas maltophilia isolated from Brazilian soil. Mem Inst Oswaldo Cruz. 2018;113:e170558.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gao J, Li B-Y, Wang H-H, Liu Z-Q. Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Curr Microbiol. 2014;69:19–24.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Green SK, Schroth MN, Cho JJ, Kominos SD, Vitanza-Jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol. 1974;28:987–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants