in

Glucocorticoids coordinate changes in gut microbiome composition in wild North American red squirrels

  • Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Microbiology. Animal behavior and the microbiome. Science 338, 198–199 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17, 565–576 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A. & Keshavarzian, A. Circadian rhythm and the gut microbiome. Int. Rev. Neurobiol. 131, 193–205 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Backhed, F. Programming of host metabolism by the gut microbiota. Endocr. Abstr. https://doi.org/10.1530/endoabs.32.s20.2 (2013).

    Article 

    Google Scholar 

  • Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, E. A., Livermore, J. A., Alberts, S. C., Tung, J. & Archie, E. A. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome. 5, 8 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez-Arango, L. F. et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes 65, 2214–2223 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Shin, J.-H. et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 170, 192–201 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62. (2015).

  • Sudo, N. The hypothalamic–pituitary–adrenal axis and gut microbiota. Gut–Brain Axis. https://doi.org/10.1016/b978-0-12-802304-4.00013-x (2016).

    Article 

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hau, M., Casagrande, S., Ouyang, J. Q. & Baugh, A. T. Glucocorticoid-mediated phenotypes in vertebrates: Multilevel variation and evolution. Adv. Stud. Behav. 48, 41–115 (2016).

    Google Scholar 

  • Sprague, R. S. & Breuner, C. W. Timing of fledging is influenced by glucocorticoid physiology in Laysan Albatross chicks. Horm. Behav. 58, 297–305 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Fletcher, Q. E., Dantzer, B. & Boonstra, R. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus). Gen. Comp. Endocrinol. 224, 136–147 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Romero, L. M. & Wikelski, M. Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events. Proc. Natl. Acad. Sci. USA. 98, 7366–7370 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 9, 26 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Stecher, B. et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000711 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, B. & Nair, G. B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci. 44(5), 1–8 (2019). https://www.ncbi.nlm.nih.gov/pubmed/31719226.

    CAS 

    Google Scholar 

  • Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. https://doi.org/10.1098/rsos.171743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • UrenWebster, T. M., Rodriguez-Barreto, D., Consuegra, S. & GarciadeLeaniz, C. Cortisol-related signatures of stress in the fish microbiome. Front. Microbiol. 11, 1621 (2020).

    Google Scholar 

  • Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc. Biol. Sci. 286, 20192111 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlčková, K. et al. Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiology 164, 40–44 (2018).

    PubMed 

    Google Scholar 

  • Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).

    PubMed 

    Google Scholar 

  • Kruuk, L. E. B., Merilä, J. & Sheldon, B. C. When environmental variation short-circuits natural selection. Trends Ecol. Evol. 18, 207–209 (2003).

    Google Scholar 

  • Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 511–523 (2002).

    PubMed 

    Google Scholar 

  • Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    PubMed 

    Google Scholar 

  • Lamontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01266.x (2007).

    Article 

    Google Scholar 

  • Fletcher, Q. E. et al. Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia https://doi.org/10.1007/s00442-013-2699-3 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fletcher, Q. E. et al. The functional response of a hoarding seed predator to mast seeding. Ecology 91, 2673–2683 (2010).

    PubMed 

    Google Scholar 

  • Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Haines, J. A. et al. Sexually selected infanticide by male red squirrels in advance of a mast year. Ecology 99, 1242–1244 (2018).

    PubMed 

    Google Scholar 

  • Dantzer, B., McAdam, A. G., Humphries, M. M., Lane, J. E. & Boutin, S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J. Anim. Ecol. 89, 2397–2414 (2020).

    PubMed 

    Google Scholar 

  • Hestbeck, J. B. A Mathematical Model of Population Regulation in Cyclic Mammals. Population Biology 290–297 (Springer, 1983).

    Google Scholar 

  • Dantzer, B., Boutin, S., Humphries, M. M. & McAdam, A. G. Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behav. Ecol. Sociobiol. 66, 865–878 (2012).

    Google Scholar 

  • Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).

    Google Scholar 

  • Guindre-Parker, S. et al. Individual variation in phenotypic plasticity of the stress axis. Biol. Lett. 15, 20190260 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laughlin, D. & Grace, J. Discoveries and novel insights in ecology using structural equation modeling. Ideas Ecol. Evol. https://doi.org/10.24908/iee.2019.12.5.c (2019).

    Article 

    Google Scholar 

  • Pugesek, B. H., Tomer, A. & von Eye, A. Structural Equation Modeling: Applications in Ecological and Evolutionary Biology (Cambridge University Press, 2003).

    MATH 

    Google Scholar 

  • Pearl, J. The causal foundations of structural equation modeling. (2012). https://doi.org/10.21236/ada557445

  • Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. USA. 114, 12767–12772 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reveles, K. R., Patel, S., Forney, L. & Ross, C. N. Age-related changes in the marmoset gut microbiome. Am. J. Primatol. https://doi.org/10.1002/ajp.22960 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dantzer, B. et al. Fecal cortisol metabolite levels in free-ranging North American red squirrels: Assay validation and the effects of reproductive condition. Gen. Comp. Endocrinol. 167, 279–286 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).

    Article 

    Google Scholar 

  • Lane, J. E., Boutin, S., Gunn, M. R., Slate, J. & Coltman, D. W. Female multiple mating and paternity in free-ranging North American red squirrels. Anim. Behav. 75, 1927–1937 (2008).

    Google Scholar 

  • Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 5, 163 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Backhans, A., Fellström, C. & Lambertz, S. T. Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiol. Infect. 139, 1230–1238 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bižanov, G. & Dobrokhotova, N. D. Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation. J. Infect. 54, 198–203 (2007).

    PubMed 

    Google Scholar 

  • Stothart, M. R. et al. Stress and the microbiome: Linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocca, J. D., Simonin, M., Bernhardt, E. S., Washburne, A. D. & Wright, J. P. Rare microbial taxa emerge when communities collide: Freshwater and marine microbiome responses to experimental mixing. Ecology https://doi.org/10.1002/ecy.2956 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio https://doi.org/10.1128/mbio.01371-14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinan, T. G. & Cryan, J. F. The microbiome–gut–brain axis in health and disease. Gastroenterol. Clin. N. Am. 46, 77–89 (2017).

    Google Scholar 

  • Claus, S. P. et al. Colonization-induced host–gut microbial metabolic interaction. MBio 2, e00271-e310 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bangsgaard Bendtsen, K. M. et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE 7, e46231 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R Soc. Lond. B Biol. Sci. 375, 20190592 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivera-Chávez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe. 19, 443–454 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meerburg, B. G. & Kijlstra, A. Role of rodents in transmission of Salmonella and Campylobacter. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.3004 (2007).

    Article 

    Google Scholar 

  • Jalal, M. S. et al. Antibiotic resistant zoonotic bacteria in Irrawaddy squirrel (Callosciurus pygerythrus). Vet. Med. Sci. 5, 260–268 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Petrosus, E., Silva, E. B., Lay, D. Jr. & Eicher, S. D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J. Anim. Sci. 96, 4543–4551 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12512 (2016).

    Article 

    Google Scholar 

  • Raulo, A. et al. Social networks strongly predict the gut microbiota of wild mice. ISME J. https://doi.org/10.1038/s41396-021-00949-3 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, C. D. et al. Microbiome structural and functional interactions across host dietary niche space. Integr. Comp. Biol. 57, 743–755 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Galley, J. D. et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C.-S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging 13, 6330–6345 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altmann, J., Gesquiere, L., Galbany, J., Onyango, P. O. & Alberts, S. C. Life history context of reproductive aging in a wild primate model. Ann. NY Acad. Sci. https://doi.org/10.1111/j.1749-6632.2010.05531.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Sylvia, K. E., Jewell, C. P., Rendon, N. M., St John, E. A. & Demas, G. E. Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav. Immun. 60, 51–62 (2017).

    PubMed 

    Google Scholar 

  • Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, T. et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci. 192, 173–182 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Deaver, J. A., Eum, S. Y. & Toborek, M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front. Microbiol. 9, 737 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schroeder, B. O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 7, 3–12 (2019).

    Google Scholar 

  • Huang, E. Y. et al. Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 21, 963–972 (2015).

    PubMed 

    Google Scholar 

  • Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Hepatol. 28, 203–209 (2015).

    Google Scholar 

  • de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471 (2017).

    PubMed 

    Google Scholar 

  • Luo, Y. et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry. 8, 187 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • McAdam, A. G., Boutin, S., Sykes, A. K. & Humphries, M. M. Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience 14, 362–369 (2007).

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 

    Google Scholar 

  • Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Touma, C., Sachser, N., Möstl, E. & Palme, R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 130, 267–278 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Kesteren, F. et al. Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. Physiol. Biochem. Zool. 92, 445–458 (2019).

    PubMed 

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. Package, “phyloseq”. Gan. 2, 7 (2013).

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 

    Google Scholar 

  • Zhang, X. & Yi, N. NBZIMM: Negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. BMC Bioinform. 21, 488 (2020).

    CAS 

    Google Scholar 

  • Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA. 107, 5881–5886 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Conversations at the front line of climate

    3 Questions: The future of international education