Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Google Scholar
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
Google Scholar
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Google Scholar
Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).
Google Scholar
Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
Google Scholar
Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).
Google Scholar
Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).
Google Scholar
Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).
Google Scholar
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
Google Scholar
Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).
Google Scholar
Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
Google Scholar
Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
Google Scholar
Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).
Google Scholar
Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
Google Scholar
Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).
Google Scholar
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
Google Scholar
Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).
Google Scholar
Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).
Google Scholar
Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).
Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).
Google Scholar
Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
Google Scholar
Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).
Google Scholar
Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).
Google Scholar
Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).
Google Scholar
Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).
Google Scholar
Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).
Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).
Google Scholar
Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).
Google Scholar
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
Google Scholar
Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).
Google Scholar
Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).
Google Scholar
Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).
Google Scholar
Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).
Google Scholar
Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).
Google Scholar
Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).
Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).
Google Scholar
Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
Google Scholar
Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).
Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).
Google Scholar
Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).
Google Scholar
Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).
Google Scholar
Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).
Google Scholar
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
Google Scholar
Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).
Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).
Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).
Google Scholar
Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).
Google Scholar
Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).
Google Scholar
Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
Google Scholar
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).
Google Scholar
Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).
Google Scholar
Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).
Google Scholar
Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).
Google Scholar
Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
Google Scholar
Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).
Google Scholar
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).
Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).
Google Scholar
O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).
Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).
Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).
Google Scholar
Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizer
Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
Google Scholar
Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).
Google Scholar
Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).
Google Scholar
Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).
Google Scholar
Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).
Google Scholar
Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022).
Source: Ecology - nature.com