in

Growth at the limits: comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis)

  • 1.

    Galloway, J. N. et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16, 1677–1700 (1982).

    CAS 
    ADS 

    Google Scholar 

  • 2.

    Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).

    ADS 

    Google Scholar 

  • 4.

    Dokulil, M. T. & Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. et al.) 1–16 (Springer, 2011).

    Google Scholar 

  • 5.

    Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful Cyanobacteria (Springer, 2005).

    Google Scholar 

  • 6.

    Harland, F. M. J., Wood, S. A., Moltchanova, E., Williamson, W. M. & Gaw, S. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins (Basel). 5, 2504–2521 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Zurawell, R. W., Chen, H., Burke, J. M. & Prepas, E. E. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8, 1–37 (2005).

    CAS 

    Google Scholar 

  • 8.

    Funari, E. & Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97–125 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environ. Toxicol. Chem. 35, 6–13 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Pick, F. R. & Lean, D. R. S. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshw. Res. 21, 425–434 (1987).

    CAS 

    Google Scholar 

  • 11.

    Schindler, A. D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 12.

    Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, 1–20 (2010).

    Google Scholar 

  • 13.

    Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).

    CAS 

    Google Scholar 

  • 14.

    Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 15.

    Higgins, S. N. et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: Evidence from a 46-year whole-lake experiment. Ecosystems 21, 1088–1100 (2018).

    CAS 

    Google Scholar 

  • 16.

    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 17.

    Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron-nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).

    CAS 
    ADS 

    Google Scholar 

  • 19.

    Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A. & Capone, D. G. Potential trace metal co-limitation controls on N2 fixation and NO3– uptake in lakes with varying trophic status. Front. Microbiol. 4, 1–12 (2013).

    CAS 

    Google Scholar 

  • 20.

    Newton, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In Biology of the Nitrogen Cycle 109–129 (Elsevier B. V, 2007).

    Google Scholar 

  • 21.

    Salama, Z. A., El-Fouly, M. M., Lazova, G. & Popova, L. P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 28, 445–451 (2006).

    CAS 

    Google Scholar 

  • 22.

    Sültemeyer, D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis. Can. J. Bot. 76, 962–972 (1998).

    Google Scholar 

  • 23.

    Vallee, B. L. & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Wu, F. Y. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40, 221–253 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Holm-Hansen, O., Gerloff, G. H. & Skogg, F. Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675 (1954).

    CAS 

    Google Scholar 

  • 27.

    Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).

    CAS 
    ADS 

    Google Scholar 

  • 28.

    Steffens, G. C. M., Biewald, R. & Buse, G. Cytochrome c oxidase is three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Price, R. C., Mortimer, N., Smith, I. E. M. & Maas, R. Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. N. Z. J. Geol. Geophys. 58, 213–228 (2015).

    CAS 

    Google Scholar 

  • 30.

    Downs, T. M., Schallenberg, M. & Burns, C. W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 70, 347–360 (2008).

    CAS 

    Google Scholar 

  • 31.

    Bayer, T. K., Schallenberg, M. & Martin, C. E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 42, 285–295 (2008).

    CAS 

    Google Scholar 

  • 32.

    Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 1–11 (2012).

    Google Scholar 

  • 33.

    Sterner, R. W. et al. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495–507 (2004).

    CAS 
    ADS 

    Google Scholar 

  • 34.

    Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).

    CAS 

    Google Scholar 

  • 35.

    North, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M. & Twiss, M. R. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315–328 (2007).

    CAS 
    ADS 

    Google Scholar 

  • 36.

    Kelly, L. T. et al. Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquat. Sci. 83, 1–11 (2021).

    Google Scholar 

  • 37.

    Sorichetti, R. J., Creed, I. F. & Trick, C. G. Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshw. Biol. 61, 146–157 (2016).

    CAS 

    Google Scholar 

  • 38.

    Wood, S. A. et al. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: Insights into potential effects of climate change. Hydrobiologia 785, 71–89 (2017).

    CAS 

    Google Scholar 

  • 39.

    Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Hawes, I. & Smith, R. Seasonal dynamics of epilithic periphyton in oligotrophic lake Taupo, New Zealand. N. Z. J. Mar. Freshw. Res. 28, 1–12 (1994).

    Google Scholar 

  • 41.

    Verburg, P. & Albert, A. Taupo Long Term Monitoring (Springer, 2018).

    Google Scholar 

  • 42.

    Marañón, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).

    PubMed 

    Google Scholar 

  • 43.

    Kagami, M. & Urabe, J. Phytoplankton growth rate as a function of cell size: An experimental test in Lake Biwa. Limnology 2, 111–117 (2001).

    Google Scholar 

  • 44.

    Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).

    CAS 

    Google Scholar 

  • 45.

    Twiss, M. R., Auclair, J.-C. & Charlton, M. N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57, 86–95 (2000).

    CAS 

    Google Scholar 

  • 46.

    Feng, Y., Fu, F. & Hutchins, D. A. Trace metal clean culture techniques. Res. Methods Environ. Physiol. Aquat. Sci. https://doi.org/10.1007/978-981-15-5354-7_36 (2021).

    Article 

    Google Scholar 

  • 47.

    Rhodes, L. et al. The Cawthron institute culture collection of micro-algae: A significant national collection. N. Z. J. Mar. Freshw. Res. 50, 291–316 (2016).

    Google Scholar 

  • 48.

    Bolch, C. J. S. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J. Appl. Phycol. 8, 5–13 (1996).

    Google Scholar 

  • 49.

    Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sañudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).

    CAS 
    ADS 

    Google Scholar 

  • 51.

    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).

    Google Scholar 

  • 52.

    Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2, 65 (2017).

    Google Scholar 

  • 53.

    Helliwell, K. E. et al. Cyanobacteria and eukaryotic algae use different chemical variants of Vitamin B12. Curr. Biol. 26, 999–1008 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Anderson, M. A. & Morel, F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oceanogr. 27, 789–813 (1982).

    CAS 
    ADS 

    Google Scholar 

  • 55.

    Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: Prevalence of reductive Iron uptake. Life 5, 841–860 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Bruland, K. W., Knauer, G. A. & Martin, J. H. Zinc in north-east Pacific water. Nature 271, 741–743 (1978).

    CAS 
    ADS 

    Google Scholar 

  • 57.

    Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).

    Google Scholar 

  • 58.

    Baken, S., Degryse, F., Verheyen, L., Merckx, R. & Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45, 2584–2590 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 59.

    Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, 1995).

    Google Scholar 

  • 60.

    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep. Res. Part II 44, 209–227 (1997).

    CAS 

    Google Scholar 

  • 61.

    Facey, J. A., Apte, S. C. & Mitrovic, S. M. A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins (Basel). 11, 1–18 (2019).

    Google Scholar 

  • 62.

    Zhang, X. et al. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 151, 500–514 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Wever, A. D. et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshw. Biol. 53, 264–277 (2008).

    Google Scholar 

  • 64.

    Nalewajko, C. & Murphy, T. P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2, 45–48 (2001).

    Google Scholar 

  • 65.

    Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).

    ADS 

    Google Scholar 

  • 66.

    Hartig, J. H. & Wallen, D. G. The influence of light and temperature on growth and photosynthesis of fragilaria crotonensis kitton. J. Freshw. Ecol. 3, 371–382 (1986).

    Google Scholar 

  • 67.

    Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).

    Google Scholar 

  • 68.

    Tompkins, T. & Blinn, D. W. The effect of mercury on the growth rate of Fragilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49, 111–116 (1976).

    CAS 

    Google Scholar 

  • 69.

    Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, aar4536 (2018).

    ADS 

    Google Scholar 

  • 70.

    Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 71.

    Strzepek, R. F., Boyd, P. W. & Sunda, W. G. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 116, 4388–4393 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 72.

    Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).

    CAS 

    Google Scholar 

  • 73.

    Kranzler, C., Rudolf, M., Keren, N. & Schleiff, E. Iron in cyanobacteria. Adv. Bot. Res. 65, 57–105 (2013).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions