Galloway, J. N. et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16, 1677–1700 (1982).
Google Scholar
Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).
Google Scholar
Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).
Google Scholar
Dokulil, M. T. & Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. et al.) 1–16 (Springer, 2011).
Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful Cyanobacteria (Springer, 2005).
Harland, F. M. J., Wood, S. A., Moltchanova, E., Williamson, W. M. & Gaw, S. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins (Basel). 5, 2504–2521 (2013).
Google Scholar
Zurawell, R. W., Chen, H., Burke, J. M. & Prepas, E. E. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8, 1–37 (2005).
Google Scholar
Funari, E. & Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97–125 (2008).
Google Scholar
Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environ. Toxicol. Chem. 35, 6–13 (2016).
Google Scholar
Pick, F. R. & Lean, D. R. S. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshw. Res. 21, 425–434 (1987).
Google Scholar
Schindler, A. D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).
Google Scholar
Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, 1–20 (2010).
Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).
Google Scholar
Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).
Google Scholar
Higgins, S. N. et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: Evidence from a 46-year whole-lake experiment. Ecosystems 21, 1088–1100 (2018).
Google Scholar
Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).
Google Scholar
Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron-nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).
Google Scholar
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).
Google Scholar
Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A. & Capone, D. G. Potential trace metal co-limitation controls on N2 fixation and NO3– uptake in lakes with varying trophic status. Front. Microbiol. 4, 1–12 (2013).
Google Scholar
Newton, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In Biology of the Nitrogen Cycle 109–129 (Elsevier B. V, 2007).
Salama, Z. A., El-Fouly, M. M., Lazova, G. & Popova, L. P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 28, 445–451 (2006).
Google Scholar
Sültemeyer, D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis. Can. J. Bot. 76, 962–972 (1998).
Vallee, B. L. & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).
Google Scholar
Wu, F. Y. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).
Google Scholar
Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40, 221–253 (1991).
Google Scholar
Holm-Hansen, O., Gerloff, G. H. & Skogg, F. Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675 (1954).
Google Scholar
Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).
Google Scholar
Steffens, G. C. M., Biewald, R. & Buse, G. Cytochrome c oxidase is three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987).
Google Scholar
Price, R. C., Mortimer, N., Smith, I. E. M. & Maas, R. Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. N. Z. J. Geol. Geophys. 58, 213–228 (2015).
Google Scholar
Downs, T. M., Schallenberg, M. & Burns, C. W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 70, 347–360 (2008).
Google Scholar
Bayer, T. K., Schallenberg, M. & Martin, C. E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 42, 285–295 (2008).
Google Scholar
Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 1–11 (2012).
Sterner, R. W. et al. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495–507 (2004).
Google Scholar
Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).
Google Scholar
North, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M. & Twiss, M. R. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315–328 (2007).
Google Scholar
Kelly, L. T. et al. Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquat. Sci. 83, 1–11 (2021).
Sorichetti, R. J., Creed, I. F. & Trick, C. G. Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshw. Biol. 61, 146–157 (2016).
Google Scholar
Wood, S. A. et al. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: Insights into potential effects of climate change. Hydrobiologia 785, 71–89 (2017).
Google Scholar
Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68 (2016).
Google Scholar
Hawes, I. & Smith, R. Seasonal dynamics of epilithic periphyton in oligotrophic lake Taupo, New Zealand. N. Z. J. Mar. Freshw. Res. 28, 1–12 (1994).
Verburg, P. & Albert, A. Taupo Long Term Monitoring (Springer, 2018).
Marañón, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
Google Scholar
Kagami, M. & Urabe, J. Phytoplankton growth rate as a function of cell size: An experimental test in Lake Biwa. Limnology 2, 111–117 (2001).
Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).
Google Scholar
Twiss, M. R., Auclair, J.-C. & Charlton, M. N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57, 86–95 (2000).
Google Scholar
Feng, Y., Fu, F. & Hutchins, D. A. Trace metal clean culture techniques. Res. Methods Environ. Physiol. Aquat. Sci. https://doi.org/10.1007/978-981-15-5354-7_36 (2021).
Google Scholar
Rhodes, L. et al. The Cawthron institute culture collection of micro-algae: A significant national collection. N. Z. J. Mar. Freshw. Res. 50, 291–316 (2016).
Bolch, C. J. S. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J. Appl. Phycol. 8, 5–13 (1996).
Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731 (2006).
Google Scholar
Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sañudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).
Google Scholar
Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).
Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2, 65 (2017).
Helliwell, K. E. et al. Cyanobacteria and eukaryotic algae use different chemical variants of Vitamin B12. Curr. Biol. 26, 999–1008 (2016).
Google Scholar
Anderson, M. A. & Morel, F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oceanogr. 27, 789–813 (1982).
Google Scholar
Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: Prevalence of reductive Iron uptake. Life 5, 841–860 (2015).
Google Scholar
Bruland, K. W., Knauer, G. A. & Martin, J. H. Zinc in north-east Pacific water. Nature 271, 741–743 (1978).
Google Scholar
Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).
Baken, S., Degryse, F., Verheyen, L., Merckx, R. & Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45, 2584–2590 (2011).
Google Scholar
Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, 1995).
Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep. Res. Part II 44, 209–227 (1997).
Google Scholar
Facey, J. A., Apte, S. C. & Mitrovic, S. M. A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins (Basel). 11, 1–18 (2019).
Zhang, X. et al. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 151, 500–514 (2019).
Google Scholar
Wever, A. D. et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshw. Biol. 53, 264–277 (2008).
Nalewajko, C. & Murphy, T. P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2, 45–48 (2001).
Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).
Google Scholar
Hartig, J. H. & Wallen, D. G. The influence of light and temperature on growth and photosynthesis of fragilaria crotonensis kitton. J. Freshw. Ecol. 3, 371–382 (1986).
Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).
Tompkins, T. & Blinn, D. W. The effect of mercury on the growth rate of Fragilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49, 111–116 (1976).
Google Scholar
Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, aar4536 (2018).
Google Scholar
Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).
Google Scholar
Strzepek, R. F., Boyd, P. W. & Sunda, W. G. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 116, 4388–4393 (2019).
Google Scholar
Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).
Google Scholar
Kranzler, C., Rudolf, M., Keren, N. & Schleiff, E. Iron in cyanobacteria. Adv. Bot. Res. 65, 57–105 (2013).
Google Scholar
Source: Ecology - nature.com