in

Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts

[adace-ad id="91168"]
  • Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Blackwell Publishing, 2007).

    Book 

    Google Scholar 

  • Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    Article 

    Google Scholar 

  • Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).

    Article 

    Google Scholar 

  • Etnoyer, P. J. et al. BOX 12|How large is the seamount biome?. Oceanography 23, 206–209 (2010).

    Article 

    Google Scholar 

  • De Forges, B. R., Koslow, J. A. & Pooro, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: Fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).

    Article 

    Google Scholar 

  • Pinheiro, H. T. et al. Fish biodiversity of the Vitória-Trindade seamount chain, southwestern Atlantic: An updated database. PLoS ONE 10, 1–17 (2015).

    Article 

    Google Scholar 

  • Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107, 9711 (2010).

    Article 

    Google Scholar 

  • Rowden, A. A. et al. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).

    Article 

    Google Scholar 

  • Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. Microbiol Open 9, e1031 (2020).

    Article 

    Google Scholar 

  • Arístegui, J. et al. Plankton metabolic balance at two North Atlantic seamounts. Deep-Sea Res. II 56, 2646–2655 (2009).

    Article 

    Google Scholar 

  • Dower, J. F. & Mackast, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Res. I 43, 837–858 (1996).

    Article 

    Google Scholar 

  • O’Hara, T. D., Rowden, A. A. & Bax, N. J. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21, 226–230 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Williams, A., Althaus, F., Clark, M. R. & Gowlett-Holmes, K. Composition and distribution of deep-sea benthic invertebrate megafauna on the Lord Howe Rise and Norfolk Ridge, southwest Pacific Ocean. Deep-Sea Res. II 58, 948–958 (2011).

    Article 
    CAS 

    Google Scholar 

  • Bridges, A. E. H., Barnes, D. K. A., Bell, J. B., Ross, R. E. & Howell, K. L. Benthic assemblage composition of South Atlantic seamounts. Front. Mar. Sci. 8, 660648 (2021).

    Article 

    Google Scholar 

  • Lapointe, A. E., Watling, L., France, S. C. & Auster, P. J. Megabenthic assemblages in the lower bathyal (700–3000 m) on the New England and corner rise seamounts Northwest Atlantic. Deep-Sea Res. I 165, 103366 (2020).

    Article 

    Google Scholar 

  • Clark, M. R. & Bowden, D. A. Seamount biodiversity: High variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia 761, 161–180 (2015).

    Article 
    CAS 

    Google Scholar 

  • McClain, C. R., Lundsten, L., Barry, J. & DeVogelaere, A. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Mar. Ecol. 31, 14–25 (2010).

    Article 

    Google Scholar 

  • Long, D. J. & Baco, A. R. Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep-Sea Res. II 99, 158–168 (2014).

    Article 

    Google Scholar 

  • Thresher, R. et al. Strong septh-related zonation of megabenthos on a rocky continental margin ( 700–4000 m) off southern Tasmania Australia. PLoS ONE 9, e85872 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Hara, T. D., Consalvey, M., Lavrado, H. P. & Stocks, K. I. Environmental predictors and turnover of biota along a seamount chain. Mar. Ecol. 31, 84–94 (2010).

    Article 

    Google Scholar 

  • Boschen, R. E. et al. Megabenthic assemblage structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Mar. Ecol. Prog. Ser. 523, 1–14 (2015).

    Article 

    Google Scholar 

  • Caratori Tontini, F. et al. Crustal magnetization of brothers volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 107, 1571–1581 (2012).

    Article 

    Google Scholar 

  • Rex, M. A., Etter, R. J., Clain, A. J. & Hill, M. S. Bathymetric patterns of body size in deep-sea gastropods. Evolution (N Y) 53, 1298–1301 (1999).

    Google Scholar 

  • O’Hara, T. D. Seamounts: Centres of endemism or species richness for ophiuroids?. Glob. Ecol. Biogeogr. 16, 720–732 (2007).

    Article 

    Google Scholar 

  • Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Levin, L. A. & Thomas, C. L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep Sea Res. A 36, 1897–1915 (1989).

    Article 

    Google Scholar 

  • Puerta, P. et al. Variability of deep-sea megabenthic assemblages along the western pathway of the Mediterranean outflow water. Deep-Sea Res. I 185, 103791 (2022).

    Article 

    Google Scholar 

  • Tapia-Guerra, J. M. et al. First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park Chile. Sci. Rep. 11, 6209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific seamount Mokumanamana. Front. Mar. Sci. 6, 715 (2019).

    Article 

    Google Scholar 

  • Perez, J. A. A., Kitazato, H., Sumida, P. Y. G., Sant’Ana, R. & Mastella, A. M. Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic). Deep-Sea Res. I 134, 1–11 (2018).

    Article 

    Google Scholar 

  • Poore, G. C. B. et al. Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. Mar. Biodivers. 45, 271–286 (2015).

    Article 

    Google Scholar 

  • Henry, L. A., Moreno Navas, J. & Roberts, J. M. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10, 2737–2746 (2013).

    Article 

    Google Scholar 

  • Meyer, K. S. et al. Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57 (2016).

    Article 

    Google Scholar 

  • Stratmann, T., Soetaert, K., Kersken, D. & van Oevelen, D. Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains. Sci. Rep. 11, 12238 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).

    Article 

    Google Scholar 

  • Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 1979(312), 543–547 (2006).

    Article 

    Google Scholar 

  • Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).

    Article 

    Google Scholar 

  • Beazley, L., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).

    Article 

    Google Scholar 

  • Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).

    Article 

    Google Scholar 

  • Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res. I 58, 442–453 (2011).

    Article 

    Google Scholar 

  • ICES. Report of the ICES-NAFO Working Group on Deep-Water Ecology (WGDEC), 9–13 March 2009, ICES CM2009ACOM:23. 2009.

  • Cárdenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U.K. 95, 1475–1516 (2015).

    Article 

    Google Scholar 

  • Cárdenas, P. et al. Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool. J. Linn. Soc. 169, 251–311 (2013).

    Article 

    Google Scholar 

  • Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Res. I 138, 98–113 (2018).

    Article 

    Google Scholar 

  • Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).

    Article 

    Google Scholar 

  • Morganti, T. M. et al. Giant sponge grounds of central Arctic seamounts are associated with extinct seep life. Nat. Commun. 13, 638 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Res. I 153, 103137 (2019).

    Article 

    Google Scholar 

  • McIntyre, F. D., Drewery, J., Eerkes-Medrano, D. & Neat, F. C. Distribution and diversity of deep-sea sponge grounds on the Rosemary bank seamount NE Atlantic. Mar. Biol. 163, 143 (2016).

    Article 

    Google Scholar 

  • Buhl-Mortensen, P. & Buhl-Mortensen, L. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar. Biol. Res. 10, 253–267 (2014).

    Article 

    Google Scholar 

  • de Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef Norway. Coral Reefs 37, 253–266 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Dunlop, K., Harendza, A., Plassen, L. & Keeley, N. Epifaunal habitat Associations on mixed and hard bottom substrates in coastal waters of Northern Norway. Front. Mar. Sci. 7, 568802 (2020).

    Article 

    Google Scholar 

  • Fiore, C. L. & Cox Jutte, P. Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Biology 129, 105–120 (2010).

    Google Scholar 

  • Murillo, F. J. et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition. Mar. Biol. Res. 8, 842–854 (2012).

    Article 

    Google Scholar 

  • Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).

    Article 

    Google Scholar 

  • Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).

    Article 

    Google Scholar 

  • Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (porifera, demospongiae) at the faroe islands, northeastern Atlantic. Sarsia 80, 1–22 (1995).

    Article 

    Google Scholar 

  • Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodivers. 49, 163–174 (2019).

    Article 

    Google Scholar 

  • Schejter, L., Chiesa, I. L., Doti, B. L. & Bremec, C. Mycale (Aegogropila) magellanica (Porifera: Demospongiae) in the southwestern Atlantic Ocean: Endobiotic fauna and new distributional information. Sci. Mar. 76, 753–761 (2012).

    Google Scholar 

  • Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).

    Article 

    Google Scholar 

  • Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean coast. Front. Mar. Sci. 7, 612779 (2021).

    Article 

    Google Scholar 

  • Kersken, D. et al. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea Antarctica. Deep-Sea Res. II 108, 101–112 (2014).

    Article 

    Google Scholar 

  • Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. 1 Oceanogr. Res. Pap. 153, 103137 (2019).

    Article 

    Google Scholar 

  • Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A Deep-Sea Sponge Loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).

    Article 

    Google Scholar 

  • de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 1979(342), 108–110 (2013).

    Article 

    Google Scholar 

  • Pawlik, J. R. & Mcmurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. (2019) https://doi.org/10.1146/annurev-marine-010419

  • Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: Preliminary results. Polar Biol. 33, 1641–1650 (2010).

    Article 

    Google Scholar 

  • Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).

    Article 

    Google Scholar 

  • Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).

    Article 

    Google Scholar 

  • Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McClain, C. R., Lundsten, L., Ream, M., Barry, J. & DeVogelaere, A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4, e4141 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walter, M., Köhler, J., Myriel, H., Steinmacher, B. & Wisotzki, A. Physical oceanography measured on water bottle samples during POLARSTERN cruise PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.871927 (2017).

  • van Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6–17. PANGAEA https://doi.org/10.1594/PANGAEA.870845 (2017).

  • Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 1979(305), 513–515 (2004).

    Article 

    Google Scholar 

  • Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 1979(339), 1430–1432 (2013).

    Article 

    Google Scholar 

  • Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, e0211009 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhulay, I., Bluhm, B. A., Renaud, P. E., Degen, R. & Iken, K. Functional pattern of benthic epifauna in the Chukchi borderland Arctic deep sea. Front. Mar. Sci. 8, 609956 (2021).

    Article 

    Google Scholar 

  • Boetius, A. & Purser, A. The expedition PS101 of the research vessel Polarstern to the Arctic Ocean in 2016. Berichte zur Polar-und Meeresforschung = Rep Polar Mar Res https://doi.org/10.2312/BzPM_0706_2017 (2017).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 1–13 (2019).

    Article 

    Google Scholar 

  • Zhulay, I., Iken, K., Renaud, P. E. & Bluhm, B. A. Epifaunal communities across marine landscapes of the deep Chukchi Borderland (Pacific Arctic). Deep Sea Res. 1 Oceanogr. Res. Pap. 151, 103065 (2019).

    Article 

    Google Scholar 

  • Åström, E. K. L., Sen, A., Carroll, M. L. & Carroll, J. L. Cold seeps in a warming Arctic: Insights for benthic ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00244 (2020).

    Article 

    Google Scholar 

  • Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 1–6 (2010).

    Article 
    CAS 

    Google Scholar 

  • Åström, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231 (2018).

    Article 

    Google Scholar 

  • Rybakova Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T. & Gebruk, A. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374 (2013).

    Article 

    Google Scholar 

  • Sweetman, A. K., Levin, L. A., Rapp, H. T. & Schander, C. Faunal trophic structure at hydrothermal vents on the southern mohn’s ridge, arctic ocean. Mar. Ecol. Prog. Ser. 473, 115–131 (2013).

    Article 

    Google Scholar 

  • Decker, C. & Olu, K. Does macrofaunal nutrition vary among habitats at the Hakon Mosby mud volcano?. Cah. Biol. Mar. 51, 361–367 (2010).

    Google Scholar 

  • Macdonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S. & Strong, S. Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep-Sea Res. II 57, 136–152 (2010).

    Article 

    Google Scholar 

  • Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J. & Bergmann, M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. 1 Oceanogr. Res. Pap. 122, 81–94 (2017).

    Article 

    Google Scholar 

  • Vedenin, A. A. et al. Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale. Prog. Oceanogr. 202, 102764 (2022).

    Article 

    Google Scholar 

  • Bart, M. C. et al. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).

    Article 

    Google Scholar 

  • Guihen, D., White, M. & Lundälv, T. Temperature shocks and ecological implications at a cold-water coral reef. ANZIAM J. https://doi.org/10.1017/S1755267212000413 (2014).

    Article 

    Google Scholar 

  • Strand, R. et al. The response of a boreal deep-sea sponge holobiont to acute thermal stress. Sci. Rep. 7, 1660 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanz, U. et al. The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot. Funct. Ecol. 36, 2188–2199 (2022).

    Article 
    CAS 

    Google Scholar 

  • Maier, S. R. et al. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Res. I 175, 103574 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. https://doi.org/10.1002/lno.11652 (2020).

    Article 

    Google Scholar 

  • Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • International Hydrographic Bureau. 16th meeting of the GEBCO sub-committee on undersea feature names (SCUFN). Preprint at (2003).

  • Torres-Valdés, S., Morische, A. & Wischnewski, L. Revision of nutrient data from Polarstern expedition PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.908179 (2019).

  • Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 87–99 (2019).

    Article 

    Google Scholar 

  • Marcon, Y. & Purser, A. PAPARA(ZZ)I : An open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).

    Article 

    Google Scholar 

  • Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Spec. Pap.: Geol. Assoc. Canada 47, 141–155 (2007).

    Google Scholar 

  • Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).

    Article 

    Google Scholar 

  • Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, 1997).

    Book 
    MATH 

    Google Scholar 

  • Rodgers, J. L. The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivar. Behav. Res. 34, 441–456 (1999).

    Article 
    CAS 

    Google Scholar 

  • Crowley, P. H. Resampling methods for computation-intensive data analysis in ecology and evolution. Annu. Rev. Ecol. Syst. 23, 405–447 (1992).

    Article 

    Google Scholar 

  • Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article 

    Google Scholar 

  • R-Core Team. R: A language and environment for statistical computing. Preprint at https://www.r-project.org/ (2017).

  • Oksanen, J. et al. vegan: Community ecology package. Preprint at (2017).

  • Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).

    Article 

    Google Scholar 

  • Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).

    Article 

    Google Scholar 

  • Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Kluijver, A. Fatty acid analysis sponges. protocols.io 1, 1–14. https://doi.org/10.17504/protocols.io.bhnpj5dn (2021).

    Article 

    Google Scholar 

  • de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, e0241095 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference