in

Harnessing agricultural microbiomes for human pathogen control

  • Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveillance Summaries. 2018;67:1.

    PubMed Central 
    Article 

    Google Scholar 

  • CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections Associated With Consumption of Fresh Spinach – United States. JAMA. 2006;296:2195–6.

    Article 

    Google Scholar 

  • Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis. 2007;13:1908.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS One. 2007;2:e1159.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mukherjee A, Mammel MK, LeClerc JE, Cebula TA. Altered Utilization of N-Acetyl-d-Galactosamine by Escherichia coli O157:H7 from the 2006 Spinach Outbreak. J Bacteriol. 2008;190:1710–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Macarisin D, Patel J, Bauchan G, Giron JA, Sharma VK. Role of Curli and Cellulose Expression in Adherence of Escherichia coli O157:H7 to Spinach Leaves. Foodborne Pathog Dis. 2012;9:160–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol. 2014;44:108–18.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Park S, Navratil S, Gregory A, Bauer A, Srinath I, Szonyi B, et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage. Appl Environ Microbiol. 2014;80:2504–15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • CDC. Investigation Details. 2021 [updated 2021; cited]; Available from: https://www.cdc.gov/ecoli/2021/o157h7-02-21/details.html.

  • Karp DS, Gennet S, Kilonzo C, Partyka M, Chaumont N, Atwill ER, et al. Comanaging fresh produce for nature conservation and food safety. Proc Natl Acad Sci. 2015;112:11126–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones MS, Fu Z, Reganold JP, Karp DS, Besser TE, Tylianakis JM, et al. Organic farming promotes biotic resistance to foodborne human pathogens. J Appl Ecol. 2019;56:1117–27.

    Article 

    Google Scholar 

  • Holden N, Pritchard L, Toth I. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMs Microbiol Rev. 2009;33:689–703.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holden N. You are what you can find to eat: bacterial metabolism in the rhizosphere. Curr Issues Mol Biol. 2019;30:1–16.

  • Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology. 2019;165:503–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liao H, Li X, Bai Y, Cui P, Wen C, Liu C, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evolut. 2021;38:2337–50.

    CAS 
    Article 

    Google Scholar 

  • Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014;7:496–516.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology. 2013;103:333–40.

    PubMed 
    Article 

    Google Scholar 

  • Dinu L-D, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol. 2011;77:8295–302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crozier L, Marshall J, Holmes A, Wright KM, Rossez Y, Merget B, et al. The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology. 2021;167:1–12.

  • Franz E, Semenov AV, Van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol. 2008;105:1569–84.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. Internal colonization of salmonella enterica serovar typhimurium in tomato plants. PLoS One. 2011;6:e27340.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, et al. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;12:1088. 7

    Google Scholar 

  • Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front Plant Sci. 2020;30:10.

    Google Scholar 

  • Launders N, Locking ME, Hanson M, Willshaw G, Charlett A, Salmon R, et al. A large Great Britain-wide outbreak of STEC O157 phage type 8 linked to handling of raw leeks and potatoes. Epidemiol Infect. 2016;144:171–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schenkel D, Deveau A, Niimi J, Mariotte P, Vitra A, Meisser M, et al. Linking soil’s volatilome to microbes and plant roots highlights the importance of microbes as emitters of belowground volatile signals. Environ Microbiol. 2019;21:3313–27.

    Article 

    Google Scholar 

  • Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Darlison J, Mogren L, Rosberg A-K, Grudén M, Minet A, Liné C, et al. Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ. 2019;675:501–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett. 2013;346:146–54.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet J-Y, et al. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes. 2020;11:1207.

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, et al. Global soil biodiversity atlas. European Commission; 2016.

  • Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A. Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Scientific Reports. 2016;6:23584.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol. 2016;38:137–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME Journal. 2016;10:265–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schikora A, Jackson RW, Van Overbeek L, Holden N. Editorial: plants as alternative hosts for human and animal pathogens – second edition. Front Microbiol. [Editorial] 2020;14:11.

    Google Scholar 

  • Lebeis SL. Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol. 2015;24:82–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, et al. A conceptual framework for invasion in microbial communities. ISME J. 2016;10:2773–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Uyttendaele M, Jaykus LA, Amoah P, Chiodini A, Cunliffe D, Jacxsens L, et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr Rev Food Sci Food Saf. 2015;14:336–56.

    Article 

    Google Scholar 

  • Litchman E. Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13:1560–72.

    PubMed 
    Article 

    Google Scholar 

  • Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24:1942–53.

    PubMed 
    Article 

    Google Scholar 

  • Hawkes CV, Connor EW. Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations. Phytobiomes. Journal. 2017;1:57–69.

    Google Scholar 

  • Meyer KM, Leveau JH. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621–9.

    PubMed 
    Article 

    Google Scholar 

  • Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 2011;5:1108–14.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ. 2014;29:123–35.

  • Alegbeleye OO, Singleton I, Sant’Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol. 2018;73:177–208.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johannessen GS, Bengtsson GB, Heier BT, Bredholt S, Wasteson Y, Rørvik LM. Potential uptake of Escherichia coli O157: H7 from organic manure into crisphead lettuce. Appl Environ Microbiol. 2005;71:2221–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fett WF. Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot. 2006;69:719–28.

    PubMed 
    Article 

    Google Scholar 

  • Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. Phytopathology. 2013;103:316–25.

    PubMed 
    Article 

    Google Scholar 

  • Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol. 2019;84:103241.

    PubMed 
    Article 

    Google Scholar 

  • Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, et al. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol. 2021;131:1564–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Williams TR, Moyne A-L, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One. 2013;8:e68642.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, et al. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol. 2018;94:fiy135.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol. 2015;15:1–13.

    CAS 
    Article 

    Google Scholar 

  • Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J, Chattopadhyay S, et al. Creek to rable: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci Total Environ. 2019;666:461–71.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gu G, Yin H-B, Ottesen A, Bolten S, Patel J, Rideout S, et al. Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes J. 2019;3:137–47.

    Article 

    Google Scholar 

  • Obayomi O, Edelstein M, Safi J, Mihiret M, Ghazaryan L, Vonshak A, et al. The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology Fertility Soils. 2020;56:729–42.

    CAS 
    Article 

    Google Scholar 

  • Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One. 2018;13:e0199291.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans