in

Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge

  • Fox MD, Williams GJ, Johnson MD, Radice VZ, Zgliczynski BJ, Kelly ELA, et al. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol. 2018;28:3355–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63.

    PubMed 
    Article 

    Google Scholar 

  • Ferrier-Pagès C, Hoogenboom M, Houlbreque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds). Coral Reefs: An Ecosystem in Transition. 2011. Springer, pp 215–29.

  • Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Ann Rev Mar Sci. 2017;9:311–35.

    PubMed 
    Article 

    Google Scholar 

  • Fabricius KE, Klumpp DW. Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser. 1995;125:195–204.

    Article 

    Google Scholar 

  • Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, et al. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev. 2020;95:1720–58.

    PubMed 
    Article 

    Google Scholar 

  • Freeman CJ, Easson CG, Fiore CL, Thacker RW. Sponge–microbe interactions on coral reefs: multiple evolutionary solutions to a complex environment. Front Mar Sci. 2021;8:1–24.

    Article 

    Google Scholar 

  • Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci USA. 2015;112:E1453–60.

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:1–12.

    CAS 

    Google Scholar 

  • Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.

  • Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT, et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rützler K. Associations between Caribbean sponges and photosynthetic organisms. In: New Perspectives in Sponge Biology: 3d International Sponge Conference, 1985. 1990. Smithsonian Institution Press.

  • Trautman DA, Hinde R, Borowitzka MA. Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Bio Ecol. 2000;244:87–105.

    Article 

    Google Scholar 

  • Sarà M. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol. 1971;11:214–21.

    Article 

    Google Scholar 

  • Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc U Kingd. 2007;87:1683–92.

    CAS 
    Article 

    Google Scholar 

  • Arillo A, Bavestrello G, Burlando B, Sarà M. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol. 1993;117:159–62.

    CAS 
    Article 

    Google Scholar 

  • Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.

    CAS 
    Article 

    Google Scholar 

  • Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G. Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol. 2000;137:453–61.

    CAS 
    Article 

    Google Scholar 

  • Unson MD, Faulkner DJ. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia. 1993;49:349–53.

    CAS 
    Article 

    Google Scholar 

  • Freeman CJ, Thacker RW, Baker DM, Fogel ML. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J. 2013;7:1116–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilkinson CR. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea. Coral Reefs. 1987;5:183–8.

    Article 

    Google Scholar 

  • Cheshire AC, Wilkinson CR, Seddon S, Westphalen G. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar Freshw Res. 1997;48:589–99.

    Article 

    Google Scholar 

  • Thacker RW, Diaz MC, Rützler K, Erwin PM, Kimble SJ, Pierce MJ, et al. Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Hajdu E, Muricy G (eds). Porifera Research: Biodiversity, Innovation and Sustainability. 2007. Museu Nacional: Rio de Janeiro, pp 621–6.

  • Erwin PM, Thacker RW. Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser. 2008;362:139–47.

    CAS 
    Article 

    Google Scholar 

  • Wilkinson CR, Trott L. Light as a factor determining the distribution of sponges across the central Great Barrier Reef. Proc. 5th Int. Coral Reef Congr. 1985. pp 125–30.

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature. 2001;413:726–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerovasileiou V, Voultsiadou E. Marine caves of the mediterranean sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS One. 2012;7:1–17.

    Article 
    CAS 

    Google Scholar 

  • Kornder NA, Cappelletto J, Mueller B, Zalm MJL, Martinez SJ, Vermeij MJA, et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs. 2021;40:1137–53.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vicente J, Webb MK, Paulay G, Rakchai W, Timmers MA, Jury CP, et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs 2021; https://doi.org/10.1007/s00338-021-02109-7.

  • Beer S, Ilan M. In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol. 1998;131:613–7.

    Article 

    Google Scholar 

  • Erwin PM, López-Legentil S, Turon X. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Micro Ecol. 2012;64:771–83.

    CAS 
    Article 

    Google Scholar 

  • Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.

    PubMed 
    Article 

    Google Scholar 

  • Biggerstaff A, Smith DJ, Jompa J, Bell JJ. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions. Coral Reefs. 2015;34:1049–61.

    Article 

    Google Scholar 

  • Freeman CJ, Baker DM, Easson CG, Thacker RW. Shifts in sponge-microbe mutualisms across an experimental irradiance gradient. Mar Ecol Prog Ser. 2015;526:41–53.

    Article 

    Google Scholar 

  • Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. ISME J. 2021;16:1163–75.

  • Achlatis M, Pernice M, Green K, de Goeij JM, Guagliardo P, Kilburn MR, et al. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B Biol Sci 2019;286:20192153.

  • Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rützler K, Duran S, Piantoni C. Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida). Mar Ecol. 2007;28:95–111.

    Article 

    Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Chalker BE. Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol. 1981;63:135–41.

    Article 

    Google Scholar 

  • Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–18.

    Article 

    Google Scholar 

  • Muscatine L, McCloskey LR, Marian R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26:601–611.

    CAS 
    Article 

    Google Scholar 

  • Koopmans M, Martens D, Wijffels RH. Growth efficiency and carbon balance for the sponge Haliclona oculata. Mar Biotechnol. 2010;12:340–349.

    CAS 
    Article 

    Google Scholar 

  • Leys SP, Kahn AS, Fang JKH, Kutti T, Bannister RJ. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol Oceanogr. 2018;63:187–202.

    CAS 
    Article 

    Google Scholar 

  • de Kluijver A, Bart MC, van Oevelen D, de Goeij JM, Leys SP, Maier SR, et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front Mar Sci. 2021;7:1–18.

    Article 

    Google Scholar 

  • de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser. 2008;357:139–51.

    Article 
    CAS 

    Google Scholar 

  • Bart MC, Mueller B, Rombouts T, van de Ven C, Tompkins G, Osinga R, et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr. 2021;66:925–38.

    CAS 
    Article 

    Google Scholar 

  • Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs. 2004;23:413–22.

    Article 

    Google Scholar 

  • Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, et al. A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol. 2015;17:3570–80.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hudspith M, Rix L, Achlatis M, Bougoure J, Guagliardo P, Clode P, et al. Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome. 2021;9:1–15.

    Article 
    CAS 

    Google Scholar 

  • Clarke KR, Gorley RN. PRIMER v7: User Manual/Tutorial. Plymouth, UK. 2015. pp 1–296.

  • Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK. 2008. pp 1–214.

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z. Fate of photosynthetically fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B Biol Sci. 1984;222:181–202.

    CAS 

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Chang Biol. 2014;20:1043–54.

    PubMed 
    Article 

    Google Scholar 

  • Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. Increasing ocean stratification over the past half-century. Nat Clim Chang. 2020;10:1116–23.

    Article 

    Google Scholar 

  • Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA. 2009;106:6176–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stoecker DK. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol. 1998;34:281–90.

    Article 

    Google Scholar 

  • de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds). Climate Change, Ocean Acidification and Sponges. 2017. Springer, Cham, pp 373–410.

  • Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr. 2018;63:337–51.

    CAS 
    Article 

    Google Scholar 

  • McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.

    CAS 
    Article 

    Google Scholar 

  • Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.

    CAS 
    Article 

    Google Scholar 

  • Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis, Thiele, 1900. Mar Biol. 2016;163:100.

    Article 

    Google Scholar 

  • Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS. Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep. 2016;6:39038.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mews LK. The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc R Soc Lond Ser B Biol Sci. 1980;209:377–401.

    CAS 

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, van Woesik R, Yamazato K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser. 1996;139:167–178.

    Article 

    Google Scholar 

  • Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:1–9.

    CAS 
    Article 

    Google Scholar 

  • Wilkinson CR. Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds). Biologie des Spongiaires. 1979. Coli. Int. C.N.R.S., Paris, p No. 291.

  • Wilkinson CR. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 1978;49:177–85.

    Article 

    Google Scholar 

  • Berthold RJ, Borowitzka MA, Mackay MA. The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia. 1982;21:327–35.

    Article 

    Google Scholar 

  • Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio. 2015;6:1–14.

    Article 
    CAS 

    Google Scholar 

  • Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao ZM, Zhou GW, Huang H, Wang Y. The cyanobacteria-dominated sponge Dactylospongia elegans in the South China Sea: prokaryotic community and metagenomic insights. Front Microbiol. 2017;8:1–12.

    Google Scholar 

  • Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trautman DA, Hinde R. Sponge/algal symbioses: a diversity of associations. In: Seckback J (ed). Symbiosis. Springer, Dordrecht; 2006, pp 521–37.

  • Pile AJ, Grant A, Hinde R, Borowitzka MA. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. J Exp Biol. 2003;206:4533–8.

    PubMed 
    Article 

    Google Scholar 

  • Davy SK, Lucas IAN, Turner JR. Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol. 1996;126:773–83.

    Article 

    Google Scholar 

  • Pupier CA, Fine M, Bednarz VN, Rottier C, Grover R, Ferrier-Pagès C. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci Rep. 2019;9:1–10.

    CAS 
    Article 

    Google Scholar 

  • Podell S, Blanton JM, Oliver A, Schorn MA, Agarwal V, Biggs JS, et al. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome. 2020;8:1–17.

    Article 
    CAS 

    Google Scholar 

  • Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Botté ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wilkinson CR. Interocean differences in size and nutrition of coral reef sponge populations. Science. 1987;236:1654–1657.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2013;16:225–233.

    PubMed 
    Article 

    Google Scholar 

  • Steindler L, Beer S, Ilan M. Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis. 2002;33:263–73.

    Google Scholar 

  • Lemloh M-L, Fromont J, Brümmer F, Usher KM. Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol. 2009;9:4.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the case of Arctic sea ice breakup

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler