Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
Google Scholar
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
Google Scholar
Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. In: […]. in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 175–311 (2018).
Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).
Google Scholar
Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).
Google Scholar
Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Rev. Sci. Tech. 27, 467–484 (2008).
Google Scholar
Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
Mouritsen, K. N. & Poulin, R. Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462–468 (2002).
Poulin, R. & Mouritsen, K. N. Climate change, parasitism and the structure of intertidal ecosystems. J. Helminthol. 80, 183–191 (2006).
Google Scholar
Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).
Google Scholar
James, C. C. et al. Marine host–pathogen dynamics: Influences of global climate change. Oceanography 31, 182–193 (2018).
Friesen, O. C., Poulin, R. & Lagrue, C. Temperature and multiple parasites combine to alter host community structure. Oikos 130(9), 1500–1511 (2021).
Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).
Google Scholar
Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).
Google Scholar
Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. The American Journal of Semiotics vol. 4 (Springer-Science+Business Media Dordrecht, 2003).
Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).
Google Scholar
Pietrock, M. & Marcogliese, D. J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 19, 293–299 (2003).
Google Scholar
Morley, N. J. Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 1442–1452 (2011).
Google Scholar
Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).
Google Scholar
Thieltges, D. W. & Rick, J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Organ. 73, 63–68 (2006).
Google Scholar
Selbach, C. & Poulin, R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020).
Google Scholar
Morley, N. J. Inbred laboratory cultures and natural trematode transmission under climate change. Trends Parasitol. 27, 286–287 (2011).
Google Scholar
Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).
Google Scholar
Paull, S. H., Lafonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host–parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).
Google Scholar
Studer, A., Poulin, R. & Tompkins, D. M. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 172, 1213–1222 (2013).
Google Scholar
Studer, A., Thieltges, D. W. & Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).
Google Scholar
Mouritsen, K. N., Tompkins, D. M. & Poulin, R. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476–483 (2005).
Google Scholar
Selbach, C., Barsøe, M., Vogensen, T. K., Samsing, A. B. & Mouritsen, K. N. Temperature–parasite interaction: Do trematode infections protect against heat stress?. Int. J. Parasitol. 50, 1189–1194 (2020).
Google Scholar
Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3, 306–333 (1969).
Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
Google Scholar
Fredensborg, B. L., Mouritsen, K. N. & Poulin, R. Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarcinatus. Mar. Ecol. Prog. Ser. 290, 109–117 (2005).
Google Scholar
Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).
Google Scholar
Wolf, F. et al. High resolution water temperature data between January 1997 and December 2018 at the GEOMAR pier surface. Bremen PANGAEA. https://doi.org/10.1594/PANGAEA.919186 (2020).
Franz, M., Lieberum, C., Bock, G. & Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 11, 947–957 (2019).
Google Scholar
Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology 96, 2056–2063 (2015).
Google Scholar
Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn. 63, 901–921 (2013).
Google Scholar
Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).
Google Scholar
Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).
Google Scholar
Clarke, A. P., Mill, P. J. & Grahame, J. The nature of heat coma in Littorina littorea (Mollusca: Gastropoda). Mar. Biol. 137, 447–451 (2000).
McDaniel, S. J. Littorina littorea: Lowered heat tolerance due to Cryptocotyle lingua. Exp. Parasitol. 25, 13–15 (1969).
Google Scholar
Ataev, G. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiâ 25, 349–359 (1991).
Paull, S. H. & Johnson, P. T. J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshw. Biol. 56, 767–778 (2011).
Paull, S. H., Raffel, T. R., Lafonte, B. E. & Johnson, P. T. J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 29, 941–950 (2015).
Kuris, A. M. Effect of exposure to Echinostoma liei miracidia on growth and survival of young Biomphalaria glabrata snails. Int. J. Parasitol. 10, 303–308 (1980).
Google Scholar
Mouritsen, K. N. & Haun, S. C. B. Community regulation by herbivore parasitism and density: Trait-mediated indirect interactions in the intertidal. J. Exp. Mar. Biol. Ecol. 367, 236–246 (2008).
Bommarito, C. et al. Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 148, 486–494 (2021).
Google Scholar
McCarthy, A. M. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383–388 (1999).
Google Scholar
Morley, N. J. & Lewis, J. W. Thermodynamics of trematode infectivity. Parasitology 142, 585–597 (2015).
Google Scholar
Mouritsen, K. N. & Jensen, K. T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151, 123–134 (1997).
Google Scholar
de Montaudouin, X., Wegeberg, A. M., Jensen, K. T. & Sauriau, P. G. Infection characteristics of Himasthla elongata cercariae in cockles as a function of water current. Dis. Aquat. Organ. 34, 63–70 (1998).
Vajedsamiei, J. et al. Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10414 (2021).
Google Scholar
Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W. & Fredensborg, B. L. Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol. Ecol. 26, 1497–1512 (2012).
Stunkard, H. W. The morphology and life history of the digenetic trematode, Himasthla littorinae sp. n. (Echinostomatidae). J. Parasitol. 52, 367–372 (2014).
Selbach, C. & Poulin, R. Parasites in space and time: A novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145, 1469–1474 (2018).
Google Scholar
Gorbushin, A. M. & Levakin, I. A. Encystment in vitro of the cercariae Himasthla elongata (Trematoda: Echinostomatidae). J. Evol. Biochem. Physiol. 41, 428–436 (2005).
Gorbushin, A. M. & Shaposhnikova, T. G. In vitro culture of the avian echinostome Himasthla elongata: From redia to marita. Exp. Parasitol. 101, 234–239 (2002).
Google Scholar
Levakin, I. A., Losev, E. A., Nikolaev, K. E. & Galaktionov, K. V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 87, 180–188 (2013).
Google Scholar
Choisy, M., Brown, S. P., Lafferty, K. D. & Thomas, F. Evolution of trophic transmission in parasites: Why add intermediate hosts?. Am. Nat. 162, 172–181 (2003).
Google Scholar
Pechenik, J. & Fried, B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology 111, 373–378 (1995).
Fried, B. & Ponder, E. L. Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. J. Helminthol. 77, 235–238 (2003).
Google Scholar
Bommarito, C. et al. Freshening rather than warming drives trematode transmission from periwinkles to mussels. Mar. Biol. 167, 1–12 (2020).
Morley, N. J. & Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 121–1214 (2013).
Büttger, H. et al. Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgol. Mar. Res. 62, 23–36 (2008).
Google Scholar
Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O. & Koons, D. N. Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. J. Anim. Ecol. 90, 562–573 (2021).
Google Scholar
Studer, A. & Poulin, R. Analysis of trait mean and variability versus temperature in trematode cercariae: Is there scope for adaptation to global warming?. Int. J. Parasitol. 44, 403–413 (2014).
Google Scholar
Berkhout, B. W., Lloyd, M. M., Poulin, R. & Studer, A. Variation among genotypes in responses to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming?. Int. J. Parasitol. 44, 1019–1027 (2014).
Google Scholar
Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of salinity and temperature on egg development and miracidial emergence. Parasitology 82, 459–465 (1981).
Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology 84, 131–135 (1982).
de Montaudouin, X. et al. Digenean trematode species in the cockle Cerastoderma edule: Identification key and distribution along the North-Eastern Atlantic Shoreline. J. Mar. Biol. Assoc. U.K. 89, 543–556 (2009).
Richard, A., de Montaudouin, X., Rubiello, A. & Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 9, 749 (2021).
Magalhães, L., Freitas, R. & de Montaudouin, X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J. Invertebr. Pathol. 177, 107479 (2020).
Google Scholar
Magalhães, L., de Montaudouin, X., Figueira, E. & Freitas, R. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637–638, 30–40 (2018).
Google Scholar
Magalhães, L. et al. Seasonal variation of transcriptomic and biochemical parameters of cockles (Cerastoderma edule) related to their infection by trematode parasites. J. Invertebr. Pathol. 148, 73–80 (2017).
Google Scholar
Bakhmet, I., Nikolaev, K. & Levakin, I. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ. J. Sea Res. 123, 51–54 (2017).
Google Scholar
Stier, T., Drent, J. & Thieltges, D. W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 529, 137–144 (2015).
Google Scholar
de Montaudouin, X., Bazairi, H. & Culloty, S. Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: A transplant experiment. Mar. Ecol. Prog. Ser. 471, 111–121 (2012).
Google Scholar
Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Österblom, H. et al. Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems 10, 877–889 (2007).
Zander, C. D. & Reimer, L. W. Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124, 119–135 (2002).
Johnson, P. T. J. et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. U. S. A. 104, 15781–15786 (2007).
Google Scholar
Budria, A. & Candolin, U. How does human-induced environmental change influence host–parasite interactions?. Parasitology 141, 462–474 (2014).
Google Scholar
Aalto, S. L., Decaestecker, E. & Pulkkinen, K. A three-way perspective of stoichiometric changes on host–parasite interactions. Trends Parasitol. 31, 333–340 (2015).
Google Scholar
Vajedsamiei, J., Melzner, F., Raatz, M., Moron, S. & Pansch, C. Cyclic thermal fluctuations can be burden or relief for an ectotherm depending on fluctuations’ average and amplitude. Funct. Ecol. 35, 2483–2496 (2021).
Moisez, E., Spilmont, N. & Seuront, L. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785 (2020).
Google Scholar
Bates, A. E., Leiterer, F., Wiedeback, M. L. & Poulin, R. Parasitized snails take the heat: A case of host manipulation?. Oecologia 167, 613–621 (2011).
Google Scholar
Shinagawa, K., Urabe, M. & Nagoshi, M. Relationships between trematode infection and habitat depth in a freshwater snail, Semisulcospira libertina (Gould). Hydrobiologia 397, 171–178 (1999).
Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).
Google Scholar
Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).
Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One 11, 1–21 (2016).
Solovyeva, A. et al. Reduced infectivity in Himasthla elongata (Trematoda, Himasthlidae) cercariae with deviant photoreaction. J. Helminthol. 94, 1–5 (2020).
de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. & Bachelet, G. Cockle infection by Himasthla quissetensis—I. From cercariae emergence to metacercariae infection. J. Sea Res. 113, 99–107 (2016).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health vol. 36 (Springer, 2009).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. (2018).
https://CRAN.R-project.org/package=DHARMa 1–36 https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf. Accessed 26 Feb 2021.
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC, 2017).
Google Scholar
Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 1–11 (2017).
Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Assessment of Regression Models Performance. CRAN. CRAN https://easystats.github.io/performance/ (2020) https://doi.org/10.1098/rsif.2017.0213. Accessed 1 Sept 2021.
Fox, J. & Weisberg, S. An R Companion to Applied Regression. Robust Regression in R (Sage, 2019).
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Source: Ecology - nature.com