Butzer, K. W. Early Hydraulic Civilization in Egypt: a Study in Cultural Ecology (University of Chicago Press, Chicago, 1976).
Said, R. The River Nile: Geology, Hydrology and Utilization (Pergamon Press, Oxford, 1993).
Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).
Google Scholar
Shirai, N. The Archaeology of the First Farmer-Herders in Egypt: New Insights into the Fayum Epipalaeolithic and Neolithic (Uni. Leiden Press, the Netherlands, 2010).
Garcea, E. A. A. Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).
Google Scholar
Wilson, P. Prehistoric settlement in the western Delta: a regional and local view from Sais (Sa el-Hagar). J. Egypt. Archaeol. 92, 75–126 (2006).
Google Scholar
Van Geel, B. Non-Pollen Palynomorphs. Smol J. P., Birks H. J. B., Last W. M., Bradley R. S., Alverson K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 3 (Springer, Dordrecht, 2002).
Van Geel, B., Hallewas, J. P. & Pals, J. P. A Late Holocene deposit under the Westfriese Zeedijk near Nkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palyno 38, 269–335 (1983).
Google Scholar
Van Geel, B. A paleoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev. Palaeobot. Palyno 25, 1–120 (1978).
Google Scholar
Marinova, E. & Atanassova, J. Anthropogenic impact on vegetation and environment during the bronze age in the area of Lake Durankulak, NE Bulgaria: pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Rev. Palaeobot. Palyno. 141, 165–178 (2006).
Google Scholar
Van Geel, B. et al. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190 (2011).
Google Scholar
Gelorini, V., Verbeken, A., van Geel, B. B., Cocquyt, C. & Verschuren, D. Modern non-pollen palynomorphs from East African lake sediments. Rev. Palaeobot. Palyno 164, 143–173 (2011).
Google Scholar
Hillbrand, M., Geel, B. V., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24, 559–568 (2014).
Google Scholar
Stanley, J. D. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).
Google Scholar
Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quarter. Sci. Rev 170, 212–231 (2017).
Google Scholar
Negm, A. M., Saavedra O., & El-Adawy A. In The Handbook of Environmental Chemistry, 55 (Springer, 2017).
Viste, E. & Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 33, 3106–3123 (2013).
Google Scholar
Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N. & Mascle, J. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change 14, 1685–1696 (2014).
Google Scholar
Wijmstra, T. A., Smit, A., Van der Hammen, T. & Van Geel, B. Vegetational succession, fungal spores and short-term cycles in pollen diagrams from the Wietmarscher Moor. Acta Botanica Neerlandica 20, 401–410 (1971).
Google Scholar
Wilson, P. In The Nile Delta as a centre of cultural interactions between Upper Egypt and the Southern Levant in the 4th millennium BC, 299–318 (Poznań Archaeological Museum, Poznan, 2014).
Zong, Y. Q. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).
Google Scholar
Yang, S. et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River delta, China. The Holocene 22, 1393–1404 (2012).
Google Scholar
He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu Culture in the lower Yangtze River. China. Quarter. Sci. Rev. 188, 90–103 (2018).
Google Scholar
Edwards, K. J., Whittington, G., Robinson, M. & Richter, D. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. J. Archaeo. Sci. 32, 1741–1756 (2005).
Google Scholar
Andersen, S. T. Identification of Wild Grass and Cereal Pollen [fossil Pollen, Annulus Diameter, Surface Sculpturing], Aarbog, 69–92 (Danmarks Geologiske Undersoegelse, 1979).
Tweddle, J. C., Edwards, K. J. & Fieller, N. R. Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Veg. Hist. Archaeobot. 14, 15–30 (2005).
Google Scholar
Joly, C., Barille, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233 (2007).
Google Scholar
Salgado-Labouriau, M. L. & Rinaldi, M. Palynology of Gramineae of the Venezuelan mountains. Grana Palynologica 29, 119–128 (1990).
Google Scholar
Josefsson, T., Ramqvist, P. H. & Rnberg, G. The history of early cereal cultivation in northernmost Fennoscandia as indicated by palynological research. Veg. Hist. Archaeobot. 23, 821–840 (2014).
Google Scholar
Zhao, X. S. et al. Climate-driven early agricultural origins and development in the Nile Delta. Egypt. J. Archaeo. Sci. 136, 105498 (2021).
Google Scholar
Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the near east: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).
Google Scholar
Riemer, H. Barbara e. barich. People, water and grain: the beginnings of domestication in the Sahara and the Nile Valley, Roma 1998. Archol. Inf. 24, 117–119 (2014).
Arranz-Otaegui, A., Colledge, S., Zapata, L., Teira-Mayolini, L. C. & Juan, J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in Southwest Asia. Proc. Natl Acad. Sci. USA 113, 201612797 (2016).
Google Scholar
Zohary, D., Hopf, M. & Weiss, E. Domestication of plants in the Old World (Oxford University Press, Oxford, 2012).
Kvavadze, E. & Bitadze, N. L. Special issue: fresh insights into the palaeoecological and palaeoclimatological value of quaternary non-pollen palynomorphs || Fibres of Linum (flax), Gossypium (cotton) and animal wool as non-pollen palynomorphs in the Late Bronze Age burials of Saphar-Kharaba, southern Georgia. Veg. Hist. Archaeobot. 19, 479–494 (2010).
Google Scholar
Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 20, 507–508 (2011).
Google Scholar
Zhao, X. S. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702 (2020).
Google Scholar
Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 6, 457–474 (2011).
Google Scholar
Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis (Blackwell Scientific Publications, Oxford, UK, 1991).
Kholeif, S. E. A. & Mudie, P. J. Palynological records of climate and oceanic conditions in the Late Pleistocene and Holocene of the Nile Cone, Southeastern Mediterranean, Egypt. Palynology 33, 1–24 (2009).
Google Scholar
Leroy, S. A. G. Palynological evidence of Azolla nilotica Dec. in recent Holocene of the eastern Nile Delta and palaeoenvironment. Veg. Hist. Archaeobot. 1, 43–52 (1992).
Google Scholar
Kholeif, S. E. A. Holocene paleoenvironmental change in inner continental shelf sediments, Southeastern Mediterranean, Egypt. J. Afr. Earth. Sci. 57, 143–153 (2010).
Google Scholar
Source: Ecology - nature.com