Variation in environmental parameters across space and time in Bohai Bay
The environmental parameters of samples collected near the Tianjin coastal area from different stations and seasons exhibited high temporal and spatial heterogeneity. The seawater temperature was 28.09 ± 0.53 °C in Aug, 17.48 ± 2.36 °C in May, and 19.55 ± 1.26 °C in Oct (Table 1). The seasonal variation in seawater temperature corresponded to the meteorological characteristics in Bohai Bay, with warm seawater in summer and relatively cool seawater in spring. The salinity was 29.69 ± 2.71‰ in Aug, 33.19 ± 0.33‰ in May, and 30.15 ± 1.63‰ in Oct. Seasonal variations in salinity may be mainly related to freshwater loading. According to the precipitation observed data of Bohai Bay in previous years, the rainfall amount and days in summer are the most19, which may lead to the increase in runoff and the relatively low salinity in summer. Chlorophyll a (Chl a) was highest in May, with lower levels in Aug and Oct. The dissolved inorganic nitrogen (DIN) was significantly higher in May and Aug than in Oct. The higher level of DIN in May and Aug may be related to terrestrial input and supply for the demand of phytoplankton growth. In October, the temperature and DIN content were both not suitable for phytoplankton growth, and Chl_a showed the lowest value. Spatially, the DIN distribution across the three seasons was rather similar, with high values observed in nearshore waters and low values in offshore waters (Dataset S1 & Fig. S1), which suggested that terrestrial input was an important source of DIN. The pH, soluble reactive phosphate (SRP) and chemical oxygen demand (COD) showed relatively higher values in October than in August and May, which may be caused by the dead phytoplankton release and terrestrial loadings through coasts and rivers. The dissolved oxygen (DO), conductivity and depth did not show significant variation among sampling times (Table 1), while the conductivity and depth had relatively higher values at offshore stations (Dataset S1) since the more remote the sampling water was, the greater the depth was in Bohai Bay and the closer it was to the open sea with higher salinity and conductivity. The ordination plot showed distinct partitioning of samples from nearshore and offshore sites along principal component axis 1 (PC1) (Fig. 1). The ordination plot could explain 73.49% of the total variation in the geo-physical–chemical parameters and revealed a linear positive correlation between different parameters (Fig. 1). AN, DIN, nitrate and Chl_a were most crucial in the partitioning of samples from May and the other 2 months; salinity, longitude, depth and conductivity were crucial for the partitioning of samples from offshore and nearshore stations; pH, COD, SRP, nitrite and temperature were crucial for the partitioning of samples from nearshore stations in August and October and samples from offshore stations. Overall, the principal component analysis (PCA) plot clearly showed both the temporal and spatial variation of the measured environmental parameters, indicating that complex biogeochemical processes and hydrodynamic conditions lead to the variation among sites and seasons.
Prokaryotic α/β-diversity variation
Measures of α-diversity showed significant differences in shannon, evenness, faith_pd and OTU richness between samples from May/Aug and Oct (Fig. 2, Table 1). Principal coordinates analysis (PCoAs) based on weighted UniFrac (WUF) distance and unweighted UniFrac (UUF) distance showed that the PCC from different sampling months separated across the first and second principal coordinates (Fig. 3A-B). Both the analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA/ADONIS) results indicated that the prokaryotic communities varied significantly across different sampling months when using a WUF distance metric (ANOSIM, r = 0.709, P = 0.001; ADONIS, R2 = 40.0%, P = 0.001) and UUF distance metric (ANOSIM, r = 0.934, P = 0.001; ADONIS, R2 = 38.7%, P = 0.001). At the same time, the prokaryotic α– and β-diversity both showed high within-month variability in Aug (Figs. 2, 3C–D), which indicated that the community varied greatly among different sites in Aug.
Correlation between prokaryotic α/β-diversity and physical, chemical and geographic factors
The α-diversity measurements exhibited significant positive correlations with temperature, pH, SRP, AN and un_ionN (Dataset S2). The correlation between α-diversity indexes and geo factors (longitude and latitude) was not strong or significant both in samples across the three sampling times or from each sampling time (Dataset S2).
The environmental variation significantly correlated with β-diversity among the three seasons (r_weighted = 0.4558, r_unweighted = 0.4631, P = 0.001, Table 2), with pH, AN, temperature, un_ionN, COD, nitrite, SRP, salinity, DO and DIN as the main individual determinants. However, it did not show significant correlations with β-diversity at any sampling time except in Oct (Table S1).
The geographic distance was not correlated with prokaryotic β-diversity (variation in community composition; r < 0.03, P > 0.05; Table 2) among the three sampling times. However, samples from Aug and Oct exhibited a significant correlation between β-diversity and geographic distance (Table S1).
Factors driving the PCC variation
PERMANOVA using the UUF/WUF distance indicated that temperature variation explained the largest part of community variation among the investigated factors (34.90%/19.83%, P = 0.001, Dataset S3), with AN (31.84%/13.56%, P = 0.001) and salinity (12.91%/6.21%, P = 0.001) as the second and third most significant sources of variation.
The variance partitioning analysis (VPA) conducted on both UUF/WUF distances showed that almost 100% percent of the variation in PCC among all three sampling times was explained by the detected environmental factors. In May, no environmental or spatial factors could be selected as significantly explain the PCC variation; in Aug, the joint effects of environmental and spatial factors could explain 49.5% of the variation; in Oct, based on WUF distance, the spatial factors could purely explain 10.5%, environmental factors could purely explain 38.8%, their joint effects could explain 28.2%, and based on UUF distance, the joint effects of environmental factors and trend could explain 13.7% of the PCC variation. These results indicated dramatic shifts in the spatial or environmental factor effects on the PCC variation at different sampling times in Bohai Bay (Table 3).
Distinct seasonal features at the phylum and OTU levels
There were notable differences in the proportions of various phyla among different seasons (sampling month). In May, there was a greater proportion of Alphaproteobacteria (41.41%), Planctomycetes (6.42%), Actinobacteria (3.86%), Firmicutes (1.48%), Acidobacteria (0.45%), TM7 (0.16%), Tenericutes (0.16%), OD1 (0.13%), and WPS-2 (0.09%) than in Aug and Oct, whereas Gammaproteobacteria (44.23%), GN02 (0.08%) and SAR406 (0.04%) were depleted in May and Aug but enriched in Oct. In Aug, Bacteroidetes (13.98%), Deltaproteobacteria (6.93%), Verrucomicrobia (4.5%), Chloroflexi (0.36%), Lentisphaerae (0.97%), TM6 (0.25%), Nitrospirae (0.08%), Chlamydiae (0.07%), Chlorobi (0.07%), Spirochaetes (0.04%) and OP8 (0.03%) were significantly enriched than in the other two sampling times (Duncan test; Table S2).
At the OTU level, OTUs with relative abundance > 0.01% (1040 OTUs) were used to perform the difference analysis, and 175 OTUs in May, 281 OTUs in Aug, and 210 OTUs in Oct were identified as seasonal specific OTUs (ssOTUs). The cooccurrence network showed that the ssOTUs were clustered separately (Fig. 4A). Furthermore, the separation of the three modules contained most of the ssOTUs specific to different seasons (Fig. 4A-B). All the ssOTUs of different seasons comprised a taxonomically broad set of prokaryotes at the phylum (phylum Proteobacteria is grouped at the class level) level (Fig. 4C) belonging to various phyla with different proportions. Betaproteobacteria, Verrucomicrobia, Gemmatimonadetes, Epsilonproteobacteria, PAUC34f., and Euryarchaeota did not show significant differences among the three sampling times at the phylum level, but features belonging to these phyla showed differences at the OTU level (Fig. 4C, Dataset S4). In addition, the phylum ssOTUs belonging to, such as Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, Actinobacteria, and Deltaproteobacteria, were not only enriched at one sampling time (Dataset S4) but also enriched at the other two sampling times (Fig. 4C, Dataset S4). These results revealed that different seasons do not strictly select specific microbial lineages at the phylum level, but a finer level analysis could more strictly reflect the seasonal variation.
Regression analysis between the relative abundance of modules to which the ssOTUs belonged and the environmental factors was also conducted, and module 1 abundance, to which the Aug-ssOTUs belonged, showed a significant positive correlation with temperature (R2 = 0.77, P = 6.609e−62), AN (R2 = 0.43, P = 7.416e−25), and un_ionN (R2 = 0.75, P = 1.366e−58) and a negative correlation with SRP (R2 = 0.81, P = 6.762e-17). This may be caused by the functional role of the microbes in Aug. In the Aug-ssOTUs, Deltaproteobacteria showed a higher ratio than in the other 2 months (Fig. 4c), and in the following functional analysis, Deltaproteobacteria contributed to the genes related to nitrogen fixation, which may help to explain why there was a positive correlation of Aug-ssOTUs to AN and un_ionN. The module 2 abundance to which the May-ssOTUs belonged showed a significant negative correlation with pH (R2 = 0.65, P = 4.026e−44), temperature (R2 = 0.19, P = 2.325e−10), un_ionN (R2 = 0.025, P = 0.01779), and SRP (R2 = 0.12, P = 4.104e−07) and a positive correlation with AN (R2 = 0.26, P = 5.174e−14). In the May-ssOTUs, the ratio of Alphaproteobacteria was the highest, and Alphaproteobacteria were reported to be pH-sensitive groups in marine environments20, which prefer neutral pH environments21. In this study, the pH in May was 8.04 ± 0.07, in Aug was 8.39 ± 0.09, in Oct was 8.38 ± 0.07, and the pH in May was the closest to neutral, and the ratio decreased with increasing pH in Oct and Aug. The abundance of module 3, to which the Oct-ssOTUs belonged, showed a significant positive correlation with SRP (R2 = 0.81, P = 0.16e-10) and pH (R2 = 0.054, P = 0.00075) and a negative correlation with temperature (R2 = 0.44, P = 2.276e−25), AN (R2 = 0.75, P = 4.51e−58), and un_ionN (R2 = 0.6, P = 3.995e-39) (Fig. S2). Phosphate has been identified to limit primary productivity22, which is of great importance in the structure of dominant bacterial taxa in marine environments23. In the Oct-ssOTUs, the ratio of Gammaproteobacteria was the highest, as reported. Gammaproteobacteria was significantly explained by SRP during the seasonal variation in the Western English Channel, with Rho equal to 0.7523, which suggested the sensitivity of it to SRP, and in that study, it also showed a negative correlation between temperature and Gammaproteobacteria and a positive correlation between SRP and Gammaproteobacteria. Although the correlation was not significant, the variation trend was consistent, which indicates that the phenomenon observed in this study was not unexpected. In addition, most ammonia-oxidizing bacteria belong to the Betaproteobacteria and Gammaproteobacteria classes are chemolithoautotrophs that oxidize ammonia to nitrite24. Gammaproteobacteria and Betaproteobacteria both had higher ratios in Oct-ssOTUs, and the functional prediction results also showed that pmoA/amoA and pmoB/amoB, which encode ammonia monooxygenase, were mainly contributed by OTUs from Gammaproteobacteria and Betaproteobacteria (Dataset S10). The utilization of ammonia may explain the negative correlation between the Oct-ssOTUs and AN.
Community assembly processes across different sampling months and sites
Based on the analysis of phylogenetic turnover, unweighted βNTI mostly ranged from -2 to 2 across different sites at a single sampling time in May, Aug and Oct, revealing that PCC variations across different sampling sites at a single time were mostly affected by stochastic processes. The unweighted βNTI was greater than 2 across May–Aug, May–Oct and Aug-Oct (Fig. 5A), which revealed that the variations in PCC across different sampling times were mostly affected by deterministic processes. The RCbray values across any two sampling times were equal to 1, and in each sampling time, the RCbray values ranged from − 1 to 1 (Fig. 5B). Combining the βNTI and RCbray values, the community assembly processes were quantified at each sampling time and at any two sampling times. As shown in Fig. 5C, turning over of the community during different sampling times was mainly governed by selection; among the different sites in May and Oct, it was mainly governed by “undominated” processes; community turn over in Aug was mainly governed by the influence of “Dispersal Limitation”. These results indicated that the shifts in the assembly of prokaryotic communities during different sampling times were caused by strong “heterogeneous selection” (βNTI > 2), and the community variation at each sampling time was mainly caused by stochastic processes.
Prediction of the metabolic potential at different sampling times
The NSTI scores of each sample ranged from 0.033 to 0.096, with a mean of 0.058 (Dataset S5). Microbial functions were detected in all the samples from the three sampling times, and it was found that the relative abundances of 242 pathways were significantly changed between samples from May and samples from Aug (Dataset S6). The relative abundances of 321 pathways were significantly changed between samples from May and Oct (Dataset S7), and the relative abundances of 370 pathways were significantly changed between samples from Aug and Oct (Dataset S8).
Genes related to energy metabolism were given more attention. For nitrogen metabolism genes relevant with nitrogen fixation (nifD, nifK) were detected only enriched in Aug, while genes relevant with nitrate reduction and denitrification (narG, narZ, nxrA, narH, narY, nxrB, narI, narV, nirD, nasA, nasB) were detected enriched in May, genes related with ammonia oxidation were both detected enriched in Oct and Aug. For sulfur metabolism, genes relevant with thiosulfate oxidation (soxA, soxB, soxC, soxX, soxY and soxZ) were only enriched in Aug, while genes relevant with sulfate and sulfite reduction (cysNC, aprA, aprB, cysJ, cysI, cysK, dsrA) were detected enriched in May and Oct (Fig. 6).
Prokaryotic taxa contributed to the significantly varied functional genes related to nitrogen and sulfur metabolism at different sampling times. At the species level, the taxa contributing to nifK and nifD mainly belonged to Deltaproteobacteria and Firmicutes, and the taxa contributing to the sox-series genes mainly belonged to Alphaproteobacteria and Gammaproteobacteria (Fig. S3). The denitrification-related functional genes that were enriched in May were mainly contributed by members from Alphaproteobacteria and Gammaproteobacteria. The taxa contributing to dsrA, aprA and aprB were mainly from Deltaproteobacteria, including members of Desulfarculaceae, Desulfobacteraceae, Desulfobulbaceae, Desulfovibrionaceae and Syntrophobacteraceae (Fig. S4).
Source: Ecology - nature.com