Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Google Scholar
Schwörer, C. et al. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg. Hist. Archaeobot. 23, 479–496 (2014).
Google Scholar
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Google Scholar
Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).
Google Scholar
Bennett, K. D. & Willis, K. J. Pollen. Tracking Environmental Change Using Lake Sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 5–32 (Kluwer Academic Publishers, 2002).
Liu, S. et al. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat. Commun. 12, 2995 (2021).
Google Scholar
Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).
Google Scholar
Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).
Google Scholar
Väre, H., Lampinen, R., Humphries, C. & Williams, P. Taxonomic diversity of vascular plants in the European alpine areas. in Alpine biodiversity in Europe (eds Nagy, L., Grabherr, G., Körner, C. & Thompson, D. B. A.) 133–148 (Springer Berlin Heidelberg, 2003).
Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European alps: A Review. Climatic Change 50, 77–109 (2001).
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
Google Scholar
Tribsch, A. & Schönswetter, P. Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52, 477–497 (2003).
Google Scholar
Rudmann-Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl. Ecol. 9, 494–503 (2008).
Google Scholar
Walsh, K. et al. A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quat. Int. 353, 52–73 (2014).
Google Scholar
Walsh, K. & Giguet-Covex, C. Encyclopedia of the World’s Biomes 555–573 (Elsevier, 2020).
Schwörer, C., Henne, P. D. & Tinner, W. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob. Chang. Biol. 20, 1512–1526 (2014).
Google Scholar
Henne, P. D. et al. An empirical perspective for understanding climate change impacts in Switzerland. Reg. Environ. Change 18, 1–17 (2017).
Niedrist, G., Tasser, E., Lüth, C., Dalla Via, J. & Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 202, 195–210 (2009).
Google Scholar
Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).
Google Scholar
Nautiyal, S. & Kaechele, H. Adverse impacts of pasture abandonment in Himalayan protected areas: Testing the efficiency of a Natural Resource Management Plan (NRMP). Environ. Impact Assess. Rev. 27, 109–125 (2007).
Google Scholar
Karger, D. N., Nobis, M. P. & Normand, S. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past (2021).
Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).
Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).
Google Scholar
Heiri, O., Ilyashuk, B., Millet, L., Samartin, S. & Lotter, A. F. Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 25, 137–149 (2015).
Google Scholar
Ivy-Ochs, S. et al. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 28, 2137–2149 (2009).
Google Scholar
Finsinger, W. & Tinner, W. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17, 1119–1127 (2007).
Google Scholar
Baroni, C. et al. Last Lateglacial glacier advance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quat. Sci. Rev. 255, 106815 (2021).
Google Scholar
Schibler, J., Elsner, J. & Schlumbaum, A. Incorporation of aurochs into a cattle herd in Neolithic Europe: Single event or breeding? Sci. Rep. 4, 5798 (2014).
Google Scholar
Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).
Google Scholar
Ilyashuk, E. A., Heiri, O., Ilyashuk, B. P., Koinig, K. A. & Psenner, R. The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps. Clim. Dyn. 52, 1–15 (2018).
Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).
Google Scholar
Alsos, I. G. et al. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quat. Sci. Rev. 259, 106903 (2021).
Google Scholar
Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).
Google Scholar
Varotto, C. et al. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy). Sci. Rep. 11, 1208 (2021).
Google Scholar
Parducci, L. et al. Proxy comparison in ancient peat sediments: Pollen, macrofossil and plant DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130382 (2015).
Google Scholar
Clarke, C. L. et al. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quat. Sci. Rev. 247, 106564 (2020).
Google Scholar
Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).
Google Scholar
Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).
Google Scholar
Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O. & Lotter, A. F. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolimnol. 30, 261–272 (2003).
Google Scholar
Lotter, A. F. et al. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg. Hist. Archaeobot. 15, 295–307 (2006).
Google Scholar
Thöle, L. et al. Reconstruction of Holocene vegetation dynamics at Lac de Bretaye, a high-mountain lake in the Swiss Alps. Holocene 26, 380–396 (2016).
Google Scholar
Heiri, O., Lotter, A. F., Hausmann, S. & Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477–484 (2003).
Google Scholar
Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M. A. & Vegas-Vilarrúbia, T. Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the last millennium. Holocene 27, 553–565 (2017).
Google Scholar
Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Belin, 2004).
Sønstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10, 1009–1018 (2010).
Google Scholar
Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003).
Google Scholar
Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 5422 (2019).
Google Scholar
Colombaroli, D. & Tinner, W. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23, 1625–1634 (2013).
Google Scholar
Schwörer, C., Colombaroli, D., Kaltenrieder, P., Rey, F. & Tinner, W. Early human impact (5000–3000 BC) affects mountain forest dynamics in the Alps. J. Ecol. 103, 281–295 (2015).
Google Scholar
Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).
Google Scholar
Gilck, F. & Poschlod, P. The origin of alpine farming: A review of archaeological, linguistic and archaeobotanical studies in the Alps. Holocene 29, 1503–1511 (2019).
Google Scholar
Tinner, W., Nielsen, E. H. & Lotter, A. F. Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat. Sci. Rev. 26, 1416–1431 (2007).
Google Scholar
Berthel, N., Schwörer, C. & Tinner, W. Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev. Palaeobot. Palynol. 174, 91–100 (2012).
Google Scholar
Hafner, A. & Schwörer, C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quat. Int. https://doi.org/10.1016/j.quaint.2016.12.049 (2017).
Oveisi, M. et al. Potential for endozoochorous seed dispersal by sheep and goats: Risk of weed seed transport via animal faeces. Weed Res. 61, 1–12 (2021).
Google Scholar
Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).
Google Scholar
Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
Google Scholar
Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 14676 (2019).
Google Scholar
Andres, B. Alpine settlement remains in the Bernese Alps (Switzerland) in medieval and modern times. Historical Archaeologies of Transhumance across Europe (eds Costello, E. & Svensson, E.) 155–169 (Routledge, 2018).
eTopoi. Journal for Ancient Studies. 3, 279–283 (2012).
Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).
Google Scholar
Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).
Google Scholar
Spiegelberger, T., Matthies, D., Müller-Schärer, H. & Schaffner, U. Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29, 541–548 (2006).
Google Scholar
Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol. Conserv. 130, 438–446 (2006).
Google Scholar
Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).
Google Scholar
Pellegrini, E., Buccheri, M., Martini, F. & Boscutti, F. Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci. Rep. 11, 8385 (2021).
Google Scholar
Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).
Google Scholar
Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).
Google Scholar
Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: A meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).
Google Scholar
Evans, D. M. et al. The cascading impacts of livestock grazing in upland ecosystems: A 10-year experiment. Ecosphere 6, art42 (2015).
Google Scholar
Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
Google Scholar
Mathieu, J. Eine Agrargeschichte der inneren Alpen. Graubünden, Tessin, Wallis 1500–1800 (Chronos, 1992).
Aerni, K, Egli, H. R & Fehn, K. Siedlungsprozesse an der Höhengrenze der Ökumene: am Beispiel der Alpen: Referate der 16 Tagung des” Arbeitskreises für genetische Siedlungsforschung in Mitteleuropa” vom 20.−23. (Siedlungsforschung: Spiez, 1991).
Brugger, S. O. et al. Alpine glacier reveals ecosystem impacts of Europe’s prosperity and peril over the last millennium. Geophys. Res. Lett. 48, e2021GL095039 (2021).
Merkt, J. & Streif, H. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geologisches Jahrbuch 88, 137–148 (1970).
Lamb, A. L. Determination of organic and carbonate content in soils and sediments by loss on ignition (LOI), NERC Isotope Geosciences Laboratory Report, 197 (2004).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon https://doi.org/10.1017/RDC.2020.41 (2020).
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Google Scholar
Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. i-vi, 1-276 (2007).
Schulze, E. A Key to the Larval Chironomidae and their Instars from Austrian Danube Region Streams and Rivers with Particular Reference to a Numerical Taxonomic Approach. Part I. In: Wasser und Abwasser, Supplementband 3/93. Hrsg.: Bundesamt für Wassergüte, Wien-Kaisermühlen. Schriftenleitung: Werner Kohl. Selbstverlag, 1993, 514 S., öS 562. Acta Hydrochim. Hydrobiol. 22, 191–191 (1994).
Google Scholar
Juggins, S. C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University (2007). https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdf.
Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis, edn 2 (Blackwell, 1991).
Stockmarr & Ja Tabletes with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
Reille, M. Pollen et spores d’Europe et d’Afrique du Nord (Laboratoire de Botanique historique et Palynologie, Marseille, 1992).
van Geel, B. et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30, 873–883 (2003).
Google Scholar
Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. N. Phytol. 132, 155–170 (1996).
Google Scholar
Tinner, W. et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8, 31–42 (1998).
Google Scholar
Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 27, 199–212 (2018).
Google Scholar
Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: Relevance for fire reconstruction. Holocene 13, 499–505 (2003).
Google Scholar
Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).
Google Scholar
Alsos, I. G. et al. The treasure vault can be opened: Large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, 432 (2020).
Google Scholar
Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).
Google Scholar
Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).
Google Scholar
Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
Google Scholar
Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).
Google Scholar
Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One 10, e0115335 (2015).
Google Scholar
Boratyn, G. M. et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).
Google Scholar
Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
Google Scholar
Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (Elsevier, 1988).
Vieira, D. C., Brustolin, M. C., Ferreira, F. C. & Fonseca, G. segRDA: Anr package for performing piecewise redundancy analysis. Methods Ecol. Evol. 10, 2189–2194 (2019).
Google Scholar
Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling inr for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Google Scholar
Chen, W. & Ficetola, G. F. Numerical methods for sedimentary‐ancient‐DNA‐based study on past biodiversity and ecosystem functioning. Environ. DNA 2, 115–129 (2020).
Google Scholar
Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-26. https://cran.r-project.org/web/packages/rioja/index.html (2020).
Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012).
Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
Tinner, W. & Ammann, B. Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In Global change and mountain regions. 133–143 (Springer, Dordrecht; 2005).
Source: Ecology - nature.com