in

High-throughput SNPs dataset reveal restricted population connectivity of marine gastropod within the narrow distribution range of peripheral oceanic islands

  • 1.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed 

    Google Scholar 

  • 2.

    Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291–310 (2009).

    Google Scholar 

  • 3.

    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: Seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).

    PubMed 

    Google Scholar 

  • 4.

    Guo, X. et al. Phylogeography of the rock shell Thais clavigera (Mollusca): Evidence for long-distance dispersal in the Northwestern Pacific. PLoS ONE 10, e0129715 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Hoffman, J. I., Clarke, A., Linse, K. & Peck, L. S. Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar. Biol. 158, 287–296 (2011).

    Google Scholar 

  • 6.

    Modica, M. V., Russini, V., Fassio, G. & Oliverio, M. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. Mar. Environ. Res. 127, 92–101 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Je Lee, H. & Boulding, E. G. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: The effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol. Ecol. 18, 2165–2184 (2009).

    Google Scholar 

  • 8.

    Barbosa, S. S., Klanten, S. O., Puritz, J. B., Toonen, R. J. & Byrne, M. Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: Influence of mating system and dispersal potential. Biol. J. Linn. Soc. 108, 821–833 (2013).

    Google Scholar 

  • 9.

    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    PubMed 

    Google Scholar 

  • 10.

    Riginos, C., Buckley, Y. M., Blomberg, S. P. & Treml, E. A. Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am. Nat. 184, 52–64 (2014).

    PubMed 

    Google Scholar 

  • 11.

    Wort, E. J. G. et al. Contrasting genetic structure of sympatric congeneric gastropods: Do differences in habitat preference, abundance and distribution matter?. J. Biogeogr. 46, 369–380 (2019).

    Google Scholar 

  • 12.

    Ayre, D. J., Minchinton, T. E. & Perrin, C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18, 1887–1903 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution (N. Y.) 59, 113–125 (2005).

    Google Scholar 

  • 14.

    White, C. et al. Ocean currents help explain population genetic structure. Proc. R. Soc. B Biol. Sci. 277, 1685–1694 (2010).

    Google Scholar 

  • 15.

    Marko, P. B. ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597–611 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Edmands, S. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol. Ecol. 10, 1743–1750 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Ni, G., Li, Q., Kong, L. & Yu, H. Comparative phylogeography in marginal seas of the northwestern Pacific. Mol. Ecol. 23, 534–548 (2014).

    PubMed 

    Google Scholar 

  • 18.

    Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 1–13 (2019).

    CAS 

    Google Scholar 

  • 19.

    Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 1603–1620 (2018).

    PubMed 

    Google Scholar 

  • 20.

    Hirai, J. Insights into reproductive isolation within the pelagic copepod Pleuromamma abdominalis with high genetic diversity using genome-wide SNP data. Mar. Biol. 167, 1–6 (2020).

    CAS 

    Google Scholar 

  • 21.

    Hosoya, S. et al. Random PCR-based genotyping by sequencing technology GRAS-Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes. Mol. Ecol. Resour. 19, 1153–1163 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature https://doi.org/10.1038/nature07893 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Savolainen, V. et al. Sympatric speciation in palms on an oceanic island. Nature https://doi.org/10.1038/nature04566 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. https://doi.org/10.1086/646604 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Chiba, S. & Cowie, R. H. Evolution and extinction of land snails on oceanic islands. Annu. Rev. Ecol. Evol. Syst. 47, 123–141 (2016).

    Google Scholar 

  • 26.

    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science (80-.) 296, 707–711 (2002).

    CAS 
    ADS 

    Google Scholar 

  • 27.

    Scheltema, R. The relevance of passive dispersal for the biogeography of Caribbean mollusks. Am. Malacol. Bull. 11, 95–115 (1995).

    Google Scholar 

  • 28.

    Bernardi, G. et al. Darwin’s fishes: Phylogeography of Galápagos Islands reef fishes. Bull. Mar. Sci. 90, 533–549 (2014).

    Google Scholar 

  • 29.

    Eble, J. A., Toonen, R. J. & Bowen, B. W. Endemism and dispersal: Comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago. Mar. Biol. 156, 689–698 (2009).

    Google Scholar 

  • 30.

    Tomokuni, M. M. Aquatic and Semiaquatic Insects of the Bonin Islands (including the Volcano Islands). Mem. Natl. Sci. Museum (1978).

  • 31.

    Sugawara, T., Watanabe, K., Kato, H. & Yasuda, K. Dioecy in Wikstroemia pseudoretusa (Thymelaeaceae) endemic to the Bonin (Ogasawara) islands. APG Acta Phytotaxon. Geobot. https://doi.org/10.18942/apg.KJ00004622804 (2004).

    Article 

    Google Scholar 

  • 32.

    Chiba, S. Species diversity and conservation of Mandarina, an endemic land snail of the Ogasawara Islands. In Restoring the Oceanic Island Ecosystem: Impact and Management of Invasive Alien Species in the Bonin Islands (eds Kawakami, K. & Okochi, I.) 117–125 (Springer, 2010). https://doi.org/10.1007/978-4-431-53859-2_18.

    Chapter 

    Google Scholar 

  • 33.

    Mukai, T., Nakamura, S., Suzuki, T. & Nishida, M. Mitochondrial DNA divergence in yoshinobori gobies (Rhinogobius species complex) between the Bonin Islands and the Japan-Ryukyu Archipelago. Ichthyol. Res. 52, 410–413 (2005).

    Google Scholar 

  • 34.

    Shih, H. T., Komai, T. & Liu, M. Y. A new species of fiddler crab from the Ogasawara (Bonin) Islands, Japan, separated from the widely-distributed sister species Uca (Paraleptuca) crassipes (White, 1847) (Crustacea: Decapoda: Brachyura: Ocypodidae). Zootaxa 3746, 175–193 (2013).

    PubMed 

    Google Scholar 

  • 35.

    Yamazaki, D. et al. Genetic diversification of intertidal gastropoda in an archipelago: The effects of islands, oceanic currents, and ecology. Mar. Biol. https://doi.org/10.1007/s00227-017-3207-9 (2017).

    Article 

    Google Scholar 

  • 36.

    Nakano, T., Takahashi, K. & Ozawa, T. Description of an endangered new species of Lunella (Gastropoda:Turbinidae) from the Ogasawara Islands, Japan. Venus J. Malacol. Soc. Japan 66, 1–10 (2007).

    Google Scholar 

  • 37.

    Nakano, T., Yazaki, I., Kurokawa, M., Yamaguchi, K. & Kuwasawa, K. The origin of the endemic patellogastropod limpets of the Ogasawara Islands in the northwestern Pacific. J. Molluscan Stud. 75, 87–90 (2009).

    Google Scholar 

  • 38.

    González-Wevar, C. A., Nakano, T., Palma, A. & Poulin, E. Biogeography in cellana (patellogastropoda, nacellidae) with special emphasis on the relationships of southern hemisphere oceanic island species. PLoS ONE 12, 1–16 (2017).

    Google Scholar 

  • 39.

    Tenggardjaja, K. A., Bowen, B. W. & Bernardi, G. Reef fish dispersal in the Hawaiian Archipelago: Comparative phylogeography of three endemic damselfishes. J. Mar. Sci. https://doi.org/10.1155/2016/3251814 (2016).

    Article 

    Google Scholar 

  • 40.

    Tenggardjaja, K. A., Bowen, B. W. & Bernardi, G. Comparative phylogeography of widespread and endemic damselfishes in the Hawaiian Archipelago. Mar. Biol. 165, 1–21 (2018).

    Google Scholar 

  • 41.

    Kurozumi, T. & Asakura, A. Marine molluscs from the northern Mariana Islands, Micronesia. Nat. Hist. Res. Spec. Issue 1, 121–168 (1994).

    Google Scholar 

  • 42.

    Nakano, D. & Makoto, N. Age structure and growth in a population of Monodonta labio (Linnaeus) at Shima Peninsula, Japan. Venus J. Malacol. Soc. Japan 40, 34–40 (1981).

    Google Scholar 

  • 43.

    Hashino, T. & Tomiyama, K. Life history of Monodonta labio confusa Tapprone-Canefri, 1874 in Kagoshima Bay, Kyushu, Japan and age estimation based on annual ring analysis of shell. Nat. Kagoshima 39, 143–155 (2013).

    Google Scholar 

  • 44.

    Yoh, A. & Sakurai, I. Reproductive cycle and food habits of the herbivorous snail Monodonta confusa off the coast of Suttsu Bay in southwestern Hokkaido, Japan. Proc. Sch. Biol. Sci. Tokai Univ. 6, 17–23 (2017).

    Google Scholar 

  • 45.

    Sasaki, R. Larval identification and occurrence of ezo abalone, Haliotis discus hannai, in the adjacent waters of Kesennuma Bay, Miyagi Prefecture. Suisan Zoushoku 32, 199–206 (1985).

    Google Scholar 

  • 46.

    Yamazaki, D., Miura, O., Uchida, S., Ikeda, M. & Chiba, S. Comparative seascape genetics of co-distributed intertidal snails Monodonta spp. in the Japanese and Ryukyu archipelagoes. Mar. Ecol. Prog. Ser. 657, 135–146 (2020).

    ADS 

    Google Scholar 

  • 47.

    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    PubMed 

    Google Scholar 

  • 48.

    Parham, J. F. et al. Genetic introgression and hybridization in Antillean freshwater turtles (Trachemys) revealed by coalescent analyses of mitochondrial and cloned nuclear markers. Mol. Phylogenet. Evol. 67, 176–187 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Hirano, T. et al. Enigmatic incongruence between mtDNA and nDNA revealed by multi-locus phylogenomic analyses in freshwater snails. Sci. Rep. 9, 6223 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 50.

    Funk, D. J. & Omland, K. E. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423 (2003).

    Google Scholar 

  • 51.

    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Hirase, S. et al. Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population. Evolution (N.Y.) 75, 176–194 (2021).

    Google Scholar 

  • 53.

    Zhao, D., Li, Q., Kong, L. & Yu, H. Cryptic diversity of marine gastropod Monodonta labio (Trochidae): Did the early Pleistocene glacial isolation and sea surface temperature gradient jointly drive diversification of sister species and/or subspecies in the Northwestern Pacific?. Mar. Ecol. https://doi.org/10.1111/maec.12443 (2017).

    Article 

    Google Scholar 

  • 54.

    Mukai, T., Nakamura, S. & Nishida, M. Genetic population structure of a reef goby, Bathygobius cocosensis, in the northwestern Pacific. Ichthyol. Res. 56, 380–387 (2009).

    Google Scholar 

  • 55.

    Keith, S. A., Herbert, R. J. H., Norton, P. A., Hawkins, S. J. & Newton, A. C. Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers. Divers. Distrib. 17, 275–286 (2011).

    Google Scholar 

  • 56.

    Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012).

    PubMed 

    Google Scholar 

  • 57.

    Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Whiteley, A. R. et al. Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conserv. Genet. 11, 1929–1943 (2010).

    Google Scholar 

  • 59.

    Riginos, C., Douglas, K. E., Jin, Y., Shanahan, D. F. & Treml, E. A. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography (Cop.) 34, 566–575 (2011).

    Google Scholar 

  • 60.

    Kuriiwa, K., Chiba, S. N., Motomura, H. & Matsuura, K. Phylogeography of Blacktip Grouper, Epinephelus fasciatus (Perciformes: Serranidae), and influence of the Kuroshio Current on cryptic lineages and genetic population structure. Ichthyol. Res. 61, 361–374 (2014).

    Google Scholar 

  • 61.

    Tachikawa, H. Nature profile of the isolated oceanic island, the Bonin Islands. Midoriishi 5, 27–29 (1994).

    Google Scholar 

  • 62.

    Setsuko, S. et al. Genetic diversity, structure, and demography of Pandanus boninensis (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: Comparison between young and old islands. Mol. Ecol. 29, 1050–1068 (2020).

    PubMed 

    Google Scholar 

  • 63.

    Asakura, A. & Nishihama, S. Studies on the biology and ecology of the intertidal animals of Chichijima Island in the Ogasawara (Bonin) Islands III: Description, form and habitat of the trochid snail, Monodonta perplexa boninensis n. subsp. in comparison with those in Monodonta perpl. Venus J. Malacol. Soc. Japan 46, 194–201 (1987).

    Google Scholar 

  • 64.

    Nakano, T. & Minato, R. Marine organisms in the intertidal zone of Nishinoshima Island. Ogasawara Res. 46, 109–121 (2019).

    Google Scholar 

  • 65.

    Sasaki, T. & Horikoshi, K. Marine animals of Minami-Iw-To lsland. Ogasawara Res. 33, 155–171 (2008).

    Google Scholar 

  • 66.

    Williams, S., Apte, D., Ozawa, T., Kaligis, F. & Nakano, T. Speciation and dispersal along continental coastlines and island arcs in the indo-west pacific turbinid gastropod genus lunella. Evolution (N. Y.) 65, 1752–1771 (2011).

    Google Scholar 

  • 67.

    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 68.

    Setsuko, S. et al. Genetic variation of pantropical Terminalia catappa plants with sea-drifted seeds in the Bonin Islands: Suggestions for transplantation guidelines. Plant Species Biol. 32, 13–24 (2017).

    Google Scholar 

  • 69.

    Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).

    Google Scholar 

  • 70.

    Parsons, K. E. The genetic effects of larval dispersal depend on spatial scale and habitat characteristics. Mar. Biol. 126, 403–414 (1996).

    CAS 

    Google Scholar 

  • 71.

    Pechenik, J. A. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).

    ADS 

    Google Scholar 

  • 72.

    Scheltema, R. S. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140, 284–322 (1971).

    Google Scholar 

  • 73.

    Wright, L. I., Tregenza, T. & Hosken, D. J. Inbreeding, inbreeding depression and extinction. Conserv. Genet. 9, 833–843 (2008).

    Google Scholar 

  • 74.

    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).

    Google Scholar 

  • 75.

    Johannesson, K. The paradox of Rockall: Why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)?. Mar. Biol. 99, 507–513 (1988).

    Google Scholar 

  • 76.

    Nakajima, Y., Nishikawa, A., Iguchi, A. & Sakai, K. Regional genetic differentiation among northern high-latitude island populations of a broadcast-spawning coral. Coral Reefs 31, 1125–1133 (2012).

    ADS 

    Google Scholar 

  • 77.

    Bowen, B. W. et al. Comparative phylogeography of the ocean planet. Proc. Natl. Acad. Sci. U. S. A. 113, 7962–7969 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13, 146–158 (2003).

    Google Scholar 

  • 80.

    Jones, G., Srinivasan, M. & Almany, G. Population connectivity and conservation of marine biodiversity. Oceanography 20, 100–111 (2007).

    Google Scholar 

  • 81.

    Colgan, D. J., Ponder, W. F., Beacham, E. & Macaranas, J. M. Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Res. https://doi.org/10.1071/MR03002 (2003).

    Article 

    Google Scholar 

  • 82.

    Griekspoor, A. & Groothuis, T. 4peaks. Ver. 1.7.1. http://nucleobytes.com/4peaks/ (2005).

  • 83.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. https://doi.org/10.1093/nar/22.22.4673 (1994).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh340 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Google Scholar 

  • 89.

    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 90.

    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btz966 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 91.

    Meirmans, P. G. & Van Tienderen, P. H. genotype and genodive: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).

    Google Scholar 

  • 92.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 93.

    Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: Contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).

    Google Scholar 

  • 94.

    Rambaut, A. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/ (2013).

  • 95.

    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: What a single car can say about traffic

    The fabrication and assessment of mosquito repellent cream for outdoor protection