in

Host microbiome responses to the Snake Fungal Disease pathogen (Ophidiomyces ophidiicola) are driven by changes in microbial richness

  • Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).

    PubMed 

    Google Scholar 

  • Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Paré, J. A. & Sigler, L. An overview of reptile fungal pathogens in the genera Nannizziopsis, Paranannizziopsis, and Ophidiomyces. J. Herpetol. Med. Surg. 26, 46–53 (2016).

    Google Scholar 

  • Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).

    Google Scholar 

  • Franklinos, L. H. V. et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 7, 3844 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Lorch, J. M. et al. Snake fungal disease: an emerging threat to wild snakes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150457 (2016).

    Google Scholar 

  • Bustos, M. L., Nicolás Sánchez, M., Peichoto, M. E. & Teibler, G. P. First report of fungal disease in a South American snake. Rev. Investig. Vet. Perú 29, 1036–1042 (2018).

  • Sun, P.-L. et al. Infection with Nannizziopsis guarroi and Ophidiomyces ophiodiicola in reptiles in Taiwan. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14049 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Haynes, E. et al. First report of ophidiomycosis in a free-ranging California kingsnake (Lampropeltis californiae) in California, USA. J. Wildl. Dis. 57, 246–249 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Takami, Y. et al. First report of ophidiomycosis in Asia caused by Ophidiomyces ophiodiicola in captive snakes in Japan. J. Vet. Med. Sci. 83, 1234–1239 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorch, J. M. et al. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease. MBio 6, e01534 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    CAS 
    ADS 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. 111, E5049–E5058 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Walker, D. M. et al. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 13, 2209–2222 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Allender, M. C., Baker, S., Britton, M. & Kent, A. D. Snake fungal disease alters skin bacterial and fungal diversity in an endangered rattlesnake. Sci. Rep. 8, 12147 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Rykiel, E. J. Jr. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).

    Google Scholar 

  • Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).

    Google Scholar 

  • Connell, J. H. Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199, 1302–1310 (1978).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Guthrie, A. L., Knowles, S., Ballmann, A. E. & Lorch, J. M. Detection of snake fungal disease due to Ophidiomyces ophiodiicola in Virginia, USA. J. Wildl. Dis. 52, 143–149 (2016).

    PubMed 

    Google Scholar 

  • Chandler, H. C. et al. Ophidiomycosis prevalence in Georgia’s eastern indigo snake (Drymarchon couperi) populations. PLoS ONE 14, e0218351 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tetzlaff, S. J. et al. Snake fungal disease affects behavior of free-ranging massasauga rattlesnakes (Sistrurus catenatus). Herpetol. Conserv. Biol. 12, 624–634 (2017).

    Google Scholar 

  • Lind, C. M., McCoy, C. M. & Farrell, T. M. Tracking outcomes of snake fungal disease in free-ranging pygmy rattlesnakes (Sistrurus miliarius). J. Wildl. Dis. 54, 352–356 (2018).

    PubMed 

    Google Scholar 

  • Lind, C. M., Lorch, J. M., Moore, I. T., Vernasco, B. J. & Farrell, T. M. Seasonal sex steroids indicate reproductive costs associated with snake fungal disease. J. Zool. 307, 104–110 (2019).

    Google Scholar 

  • McKenzie, J. M. et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth 16, 141–150 (2019).

    PubMed 

    Google Scholar 

  • McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 5, cow077 (2017).

  • Hill, A. J. et al. Common cutaneous bacteria isolated from snakes inhibit growth of Ophidiomyces ophiodiicola. EcoHealth 15, 109–120 (2018).

    PubMed 

    Google Scholar 

  • Baker, S. et al. Case definition and diagnostic testing for Snake Fungal Disease. Herpetol. Rev. 50, 279–285 (2019).

    Google Scholar 

  • Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

  • Agugliaro, J., Lind, C. M., Lorch, J. M. & Farrell, T. M. An emerging fungal pathogen is associated with increased resting metabolic rate and total evaporative water loss rate in a winter-active snake. Funct. Ecol. 34, 486–496 (2020).

    Google Scholar 

  • Frick, W. F. et al. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence. Ecology 98, 624–631 (2017).

    PubMed 

    Google Scholar 

  • Gervasi, S. S., Hunt, E. G., Lowry, M. & Blaustein, A. R. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian-chytrid fungus system. Funct. Ecol. 28, 569–578 (2014).

    Google Scholar 

  • Allender, M. C. et al. Development of snake fungal disease after experimental challenge with Ophidiomyces ophiodiicola in cottonmouths (Agkistrodon piscivorous). PLoS ONE 10, e0140193 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. 107, 9695–9700 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Neuman-Lee, L. A. et al. Assessing multiple endpoints of atrazine ingestion on gravid Northern Watersnakes (Nerodia sipedon) and their offspring. Environ. Toxicol. 29, 1072–1082 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).

    PubMed 

    Google Scholar 

  • Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

    PubMed 

    Google Scholar 

  • Jani, A. J. et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J. 15, 1628–1640 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 1–8 (2017).

    Google Scholar 

  • Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    PubMed 
    ADS 

    Google Scholar 

  • Lankau, E. W., Hong, P.-Y. & Mackie, R. I. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Mol. Ecol. 21, 1779–1788 (2012).

    PubMed 

    Google Scholar 

  • Mebert, K. Good species despite massive hybridization: genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Mol. Ecol. 17, 1918–1929 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Bohuski, E., Lorch, J. M., Griffin, K. M. & Blehert, D. S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 11, 95 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    Google Scholar 

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).

  • Bozdogan, H. Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

    MathSciNet 
    MATH 

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, Thousand Oaks, 2011).

    Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 

    Google Scholar 

  • Heip, C. A new index measuring evenness. J. Mar. Biol. Assoc. UK 54, 555–557 (1974).

    Google Scholar 


  • Source: Ecology - nature.com

    New power sources

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal