Chapman, R. F. Chemoreception: The significance of receptor numbers. Adv. Insect Physiol. 16, 247–356 (1982).
Google Scholar
Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
Wyatt, T. D. Pheromones and Animal Behavior: Chemical Signals and Signatures (Cambridge University Press, 2014).
Elgar, A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91, 457–469 (2018).
Google Scholar
Dötterl, S. & Vereecken, N. J. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can. J. Zool. 88, 668–697 (2010).
Leonard, A. S., Dornhaus, A. & Papaj, D. R. Why are floral signals complex, an outline of functional hypotheses. In Evolution of Plant-Pollinator Relationships (ed. Patiny, S.) (Cambridge University Press, USA, 2012).
Colazza, S., Peri, E., Salerno, G. & Conti, E. Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues. In Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (eds Consoli, F. L. et al.) 97–147 (Springer, 2010).
Kelber, A. et al. Light intensity limits the foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72 (2006).
Polidori, C., Jorge, A. & Ornosa, C. Antennal morphology and sensillar equipment vary with pollen diet specialization in Andrena bees. Arthropod Struct. Develop. 57, 100950 (2020).
Spaethe, J., Brockmann, A., Halbig, C. & Tautz, J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften. 94, 733–739 (2007).
Google Scholar
Warrant, E. J., Kelber, A., Wallén, R. & Wcislo, W. The physiological optics of ocelli in nocturnal and diurnal bees and wasps. Arthropod Struct. Dev. 35, 293–305 (2006).
Google Scholar
Keesey, I. W. et al. Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat. Commun. 10, 1162. https://doi.org/10.1038/s41467-019-09087-z (2019).
Google Scholar
Keil, T. A. Morphology and Development of the Peripheral Olfactory Organs. In Insect Olfaction (ed. Hansson, B. S.) 5–47 (Springer, 1999).
Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6, 26041. https://doi.org/10.1038/srep26041 (2016).
Google Scholar
Bulova, S., Purce, K., Khodak, P., Sulger, E. & O’Donnell, S. Into the black and back: The ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci. Nat. 103, 31. https://doi.org/10.1007/s00114-016-1353-4 (2016).
Google Scholar
Freelance, C. B. et al. The eyes have it: Dim-light activity is associated with the morphology of eyes but not antennae across insect orders. Biol. J. Linn. Soc. 134, 303–315 (2021).
Barrett, M. et al. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 207, 497–504 (2021).
Google Scholar
Newland, P. Physiological properties of afferents from tactile hairs on the hindlegs of the locust. J. Exp. Biol. 155, 487–503 (1991).
Google Scholar
Dahake, A., Stöckl, A., Foster, J., Sane, S. P. & Kelber, A. The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife e37606 (2018).
Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. Antennal mechanosensors mediate flight control in moths. Science 315, 863–866 (2007).
Google Scholar
Land, M. F. Compound Eye Structure: Matching Eye to Environment. In Adaptive Mechanisms in the Ecology of Vision (eds Archer, S. et al.) 51–72 (Kluwer Academic Publishers, 1998).
Land, M. F. Visual acuity in insects. Ann. Rev. Entomol. 42, 147–177 (1997).
Google Scholar
Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2003).
Jander, U. & Jander, R. Allometry and resolution of bee eyes (Apoidea). Arthropod Struct. Dev. 30, 179–193 (2002).
Google Scholar
Berry, R., van Kleef, J. & Stange, G. The mapping of visual space by dragonfly lateral ocelli. J. Comp. Physiol. A 193, 495–513 (2007).
Hung, Y. S. & Ibbotson, M. R. Ocellar structure and neural innervation in the honeybee. Front. Neuroanat. https://doi.org/10.3389/fnana.2014.00006 (2014).
Google Scholar
Greiner, B. Visual adaptations in the night-active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).
Google Scholar
Klotz, J. H., Reid, B. L. & Gordon, W. C. Variation of ommatidia number as a function of worker size in Camponotus pennsylvanicus (DeGeer) (Hymenoptera, Formicidae). Insect Soc. 39, 233–236 (1992).
Narendra, A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. R. Soc. B 278, 1141–1149 (2011).
Google Scholar
Piwczyński, M. et al. Molecular phylogeny of Miltogramminae (Diptera: Sarcophagidae): Implications for classification, systematics and evolution of larval feeding strategies. Mol. Phyl. Evol. 116, 49–60 (2017).
Spofford, M. G. & Kurczewski, F. E. Comparative larvipositional behaviors and cleptoparasitic frequencies of Nearctic species of Miltogrammini (Diptera, Sarcophagidae). J. Nat. Hist. 24, 731–755 (1990).
Alcock, J. The natural history of a miltogrammine fly, Miltogramma rectangularis (Diptera: Sarcophagidae). J. Kansas Entomol. Soc. 73, 208–219 (2000).
Newcomer, E. J. Notes on the habits of a digger wasp and its inquiline flies. Ann. Entomol. Soc. Am. 23, 552–563 (1930).
Ristich, S. S. The host relationship of a miltogrammid fly Senotainia trilineata (VDW). Ohio J. Sci. 56, 271–274 (1956).
Giordani, G. Contributo alla conoscenza della Senotainia tricuspis Meig, dittero sarcofagide, endoparassita dell’ape domestica. Boll. Istit. Entomol. Univ. Bologna 21, 61–84 (1955).
Povolný, D. & Verves, Yu. G. The flesh-flies of Central Europe (Insecta, Diptera, Sarcophagidae). Spixiana (Supplement) 24, 1–260 (1997).
Evans, H. E. & O’Neill, K. M. The sand wasps: Natural history and behavior (Harvard University Press, 2007).
O’Neill, K. M. Solitary Wasps: Natural History and Behavior (Cornell University Press, 2001).
Pape, T. The Sarcophagidae (Diptera) of Fennoscandia and Denmark. Fauna Entomol. Scand. 19, 1–203 (1987).
Polidori, C., Ouadragou, M., Gadallah, N. & Andrietti, F. Potential role of evasive flights and nest closures in an African sand wasp, Bembix sp. near capensis Lepeletier 1845 (Hymenoptera Crabronidae), against a parasitic satellite fly. Trop. Zool. 22, 1–14 (2009).
Polidori, C. Interactions between the social digger wasp, Cerceris rubida, and its brood parasitic flies at a Mediterranean nest aggregation. J. Insect Behav. 30, 86–102 (2017).
Pape, T. A new species of Hoplacephala Macquart (Diptera: Sarcophagidae) from Namibia, with a discussion of generic monophyly. Zootaxa 1183, 57–68 (2006).
Haynie, J. L. & Bryant, P. J. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J. Exp. Zool. 237, 293–308 (1986).
Google Scholar
Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).
Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benthol. Soc. 10, 309–321 (1991).
Seidl, R. & Kaiser, W. Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J. Comp. Physiol. A 143, 17–26 (1981).
Stuckenberg, B. R. Antennal evolution in the Brachycera (Diptera), with a reassessment of terminology relating to the flagellum. Stud. Dipterol. 6, 33–48 (1999).
Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).
Google Scholar
Young, A. D. et al. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evol. Biol. 16, 1–13 (2016).
Gillung, J. P. et al. Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Mol. Phyl. Evol. 128, 233–245 (2018).
Google Scholar
Buenaventura, E., Szpila, K., Cassel, B. K., Wiegmann, M. & Pape, T. An anchored hybrid enrichment-based dataset challenges the traditional classification of flesh flies (Diptera: Sarcophagidae). Syst. Entomol. 45, 281–301 (2020).
Grzywacz, A. et al. Towards a new classification of Muscidae (Diptera): A comparison of hypotheses based on multiple molecular phylogenetic approaches. Syst. Entomol. 46, 508–525 (2021).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
Google Scholar
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Yan, L. et al. A phylotranscriptomic framework for flesh fly evolution (Diptera, Calyptratae, Sarcophagidae). Cladistics https://doi.org/10.1111/cla.12449 (2020).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).
Google Scholar
Maddison, W. P. & Maddison, D. R. Mesquite: A Modular System for Evolutionary analysis. Version 3.61. http://www.mesquiteproject.org (2019).
Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).
Google Scholar
Hansen, T. F., Pienaar, J. & Orzack, S. H. A comparative method for studying adaptation to a randomly evolving environment. Evolution 62, 1965–1977 (2008).
Google Scholar
Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus lizards: Adaptation, phylogenetic inertia and niche tracking. Am. Nat. 174, 204–220 (2009).
Google Scholar
Hansen, T. F. Use and Misuse of Comparative Methods in the Study of Adaptation. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 351–379 (Springer, 2014).
Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).
Google Scholar
Warrant, E. J. et al. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 14, 1309–1318 (2004).
Google Scholar
Somanathan, H., Kelber, A., Wallén, R., Borges, R. M. & Warrant, E. J. Visual ecology of Indian carpenter bees II: Visual adaptations to nocturnal and diurnal lifestyles. J. Comp. Physiol. A 195, 571–583 (2009).
Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. 160, 11–21 (1987).
Moser, J. C. et al. Eye size and behaviour of day and night-flying leafcutting ant alates. J. Zool. 264, 69–75 (2004).
Greiner, B. et al. Eye structure correlates with distinct foraging-bout timing in primitive ants. Curr. Biol. 17, R879–R880 (2007).
Google Scholar
Warrant, E. J. Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211, 1737–1746 (2008).
Google Scholar
Leys, R. & Hogendoorn, K. Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa). Apidologie 39, 119–132 (2008).
Snyder, A. W. Physics of Vision in Compound Eyes. In Handbook of Sensory Physiology: Vision in Invertebrates (ed. Autrum, H. J.) (Springer, 1979).
McCorquodale, D. B. Digger wasp provisioning flights as a defense against a nest parasite, Senotainia trilineata. Can. J. Zool. 64, 1620–1627 (1986).
Gilbert, C. & Strausfeld, N. J. The functional organization of male-specific visual neurons in flies. J. Comp. Physiol. A 169, 395–411 (1991).
Google Scholar
Trischler, C., Boeddeker, N. & Egelhaaf, M. Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli. J. Comp. Physiol. A 193, 559–572 (2007).
Taylor, G. J. et al. The dual function of orchidbee ocelli as revealed by X-Ray microtomography. Curr. Biol. 26, 1319–1324 (2016).
Google Scholar
Hengstenberg, R. Multisensory Control in Insect Oculomotor Systems. In Visual Motion and Its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallmann, J.) (Elsevier, 1993).
Schuppe, H. & Hengstenberg, R. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. A 173, 143–149 (1993).
Crosskey, R. W. & Lane, R. P. Introduction to Diptera. In Medical Insects and Arachnids (eds Lane, R. P. & Crosskey, R. W.) (Chapman and Hall, 1993).
Abouzied, E. M. Antennal and maxillary palp sensillae of male and female Liosarcophaga babiyari Lehrer (Diptera: Sarcophagidae). Bull. Ent. Soc. Egypt 85, 29–48 (2008).
Wasserman, S. L. & Itagaki, H. The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J. Insect Physiol. 49, 271–280 (2003).
Google Scholar
Khedre, A. M. Olfactory sensilla on the antennae and maxillary palps of the fleshfly Wohlfahrtia nuba (Wied.) (Diptera: Sarcophagidae). J. Egypt Ger. Soc. Zool. 24, 171–193 (1997).
Pezzi, M. et al. Ultrastructural morphology of the antenna and maxillary palp of Sarcophaga tibialis (Diptera: Sarcophagidae). J. Med. Entomol. 53, 807–814 (2016).
Google Scholar
Smallegange, R. C., Kelling, F. J. & Den Otter, C. J. Types and numbers of sensilla on antennae and maxillary palps of small and large houseflies, Musca domestica (Diptera, Muscidae). Microsc. Res. Tech. 71, 880–886 (2008).
Google Scholar
Zhang, D., Wang, Q. K., Yang, Y. Z., Chen, Y. O. & Li, K. Sensory organs of the antenna of two Fannia species (Diptera: Fanniidae). Parasitol. Res. 112, 2177–2185 (2013).
Google Scholar
Been, T. H., Schomaker, C. H. & Thomas, G. Olfactory sensilla on the antenna and maxillary palp of the sheep head fly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Int. J. Insect Morphol. Embryol. 17, 121–133 (1998).
Zacharuk, R. Y. & Antennal, S. Comparative Insect Physiology, Biochemistry and Pharmacology. In Pergamon Press (eds Kerkut, G. A. & Gilbert, L. I.) (1985).
Sukontason, K. et al. Antennal sensilla of some forensically important flies in families Calliphoridae Sarcophagidae and Muscidae. Micron 35, 671–679 (2004).
Google Scholar
Mamiya, A., Straw, A. D., Tómasson, E. & Dickinson, M. H. Active and passive antennal movements during visually guided steering in flying Drosophila. J Neurosci 31, 6900–6914 (2011).
Google Scholar
Fuller, S. B., Straw, A. D., Peek, M. Y., Murray, R. M. & Dickinson, M. H. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Nat. Acad. Sci. 111, E1182–E1191 (2014).
Google Scholar
Nalbach, G. Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system. Neuroscience 61, 149–163 (1994).
Google Scholar
Rozanski, A. N. et al. Differential investment in visual and olfactory brain regions is linked to the sensory needs of a wasp social parasite and its host. J. Comp. Neurol. https://doi.org/10.1002/cne.25242 (2021).
Google Scholar
Source: Ecology - nature.com