Carleton, C. & Collard, M. Recent major themes and research areas in the study of human-environmental interaction in prehistory. Environ. Archaeol. 25, 114–130 (2020).
Google Scholar
deMenocal, P. B. Climate and human evolution. Science 331, 540–542 (2011).
Google Scholar
Potts, R. Evolution and environmental change in early human prehistory. Annu. Rev. Anthropol. 41, 151–167 (2012).
Google Scholar
Mayewski, P. A. et al. Holocene climate variability. Quatern. Res. 62, 243–255 (2004).
Google Scholar
Rohling, E. J. & Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975 (2005).
Google Scholar
Thomas, E. R. et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).
Google Scholar
Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W. & Sonnichsen, G. V. Lake agassiz outburst age and routing by labrador current and the 82 cal ka cold event. Quat. Int. 260, 83–97 (2012).
Google Scholar
Mary, Y. et al. Changes in Holocene meridional circulation and poleward Atlantic flow: The Bay of Biscay as a nodal point. Clim. Past 13, 201–216 (2017).
Google Scholar
Prasad, S. et al. The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Glob. Planet. Change 67, 218–226 (2009).
Google Scholar
Seppä, H. et al. Spatial structure of the 8200 cal yr BP event in Northern Europe. Clim. Past Discuss. 3, 165–195 (2007).
Google Scholar
Alley, R. B. & Ágústsdóttir, A. M. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quatern. Sci. Rev. 24, 1123–1149 (2005).
Google Scholar
Morrill, C. & Jacobsen, R. M. How widespread were climate anomalies 8200 years ago?. Geophys. Res. Lett. 32, 2 (2005).
Google Scholar
Dixit, Y., Hodell, D. A., Sinha, R. & Petrie, C. A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci. Lett. 391, 16–23 (2014).
Google Scholar
Bustamante, M. G. et al. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quatern. Sci. Rev. 146, 274–287 (2016).
Google Scholar
Roffet-Salque, M. et al. Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proc. Natl. Acad. Sci. 115, 8705–8709 (2018).
Google Scholar
Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: A Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).
Google Scholar
van der Plicht, J., Akkermans, P. M. M. G., Nieuwenhuyse, O., Kaneda, A. & Russell, A. Tell Sabi Abyad, Syria: Radiocarbon chronology, cultural change, and the 8.2 ka event. Radiocarbon 53, 229–243 (2011).
Google Scholar
Vermeersch, P. M. et al. Early and middle holocene human occupation of the Egyptian Eastern desert: Sodmein cave. Afr. Archaeol. Rev. 32, 465–503 (2015).
Google Scholar
Gutiérrez-Zugasti, I. et al. Shell midden research in Atlantic Europe: State of the art, research problems and perspectives for the future. Quatern. Int. 239, 70–85 (2011).
Google Scholar
Bicho, N., Umbelino, C., Detry, C. & Pereira, T. The emergence of Muge Mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J. Island Coast. Archaeol. 5, 86–104 (2010).
Google Scholar
Mannino, M. A., Spiro, B. F. & Thomas, K. D. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J. Archaeol. Sci. 30, 667–679 (2003).
Google Scholar
García-Escárzaga, A. et al. Stable oxygen isotope analysis of Phorcus lineatus (da Costa, 1778) as a proxy for foraging seasonality during the Mesolithic in northern Iberia. Archaeol. Anthropol. Sci. 11, 5631–5644 (2019).
Google Scholar
Crisp, D. The effects of the severe winter of 1962–63 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).
Google Scholar
Mieszkowska, N., Hawkins, S., Burrows, M. & Kendall, M. Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. J. Mar. Biol. Assoc. U.K. 87, 537–545 (2007).
Google Scholar
Hawkins, S. J. et al. Complex interactions in a rapidly changing world: Responses of rocky shore communities to recent climate change. Clim. Res. 37, 123–133 (2008).
Google Scholar
Gutiérrez-Zugasti I, Cuenca-Solana D. Biostratigraphy of shells and climate changes in the Cantabrian region (northern Spain) during the Pleistocene-Holocene transition. In: Archaeomalacology Shells in the Arcaheological Record. British Archaeological Reports International Series 2666 (eds Szabó K, Dupont C, Dimitrijevic V, Gómez-Castélum L, Serrand N). Archaeopress (2014).
Thomas, K. D. Molluscs emergent, Part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. J. Archaeol. Sci. 56, 133–140 (2015).
Google Scholar
García-Escárzaga, A. et al. Bayesian estimates of marine radiocarbon reservoir effect in northern Iberia during Early and Middle Holocene. Quatern. Geochronol. 67, 101232 (2022).
Google Scholar
Andrus, C. F. T. Shell midden sclerochronology. Quatern. Sci. Rev. 30, 2892–2905 (2011).
Google Scholar
Wang, T., Surge, D. & Mithen, S. Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317–318, 104–113 (2012).
Google Scholar
Gutiérrez-Zugasti, I., García-Escárzaga, A., Martín-Chivelet, J. & González-Morales, M. R. Determination of sea surface temperatures using oxygen isotope ratios from Phorcus lineatus (Da Costa, 1778) in northern Spain: Implications for paleoclimate and archaeological studies. Holocene 25, 1002–1014 (2015).
Google Scholar
García-Escárzaga, A. et al. Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chem. Geol. 526, 49–61 (2019).
Google Scholar
Bronk, R. C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Google Scholar
Bronk, R. C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
Google Scholar
Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Heaton, T. J. et al. Marine20-the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Google Scholar
Bailey, G. N. & Craighead, A. S. Late Pleistocene and Holocene coastal paleoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeol. Int. J. 18, 175–204 (2003).
Google Scholar
Nuñez S. Dinámicas socio-ecológicas, resiliencia y vulnerabilidad en un paisaje atlántico montañoso: la región cantábrica durante el Holoceno. Unpublished PhD dissertation, Universidad de Cantabria (2018).
Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, D06102 (2006).
Google Scholar
Ellison, C. R., Chapman, M. R. & Hall, I. R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 1929–1932 (2006).
Google Scholar
LeGrande, A. et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. U.S.A. 103, 837–842 (2006).
Google Scholar
Domínguez-Villar, D. et al. Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology 37, 1095–1098 (2009).
Google Scholar
Lorenz, S. J., Kim, J.-H., Rimbu, N., Schneider, R. R. & Lohmann, G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography 21, 2 (2006).
Google Scholar
Gutiérrez-Zugasti, I. Coastal resource intensification across the Pleistocene-Holocene transition in Northern Spain: Evidence from shell size and age distributions of marine gastropods. Quatern. Int. 244, 54–66 (2011).
Google Scholar
Marín-Arroyo, A. B. Human response to Holocene warming on the Cantabrian Coast (northern Spain): An unexpected outcome. Quatern. Sci. Rev. 81, 1–11 (2013).
Google Scholar
Muñoz-Sobrino, C., Ramil-Rego, P., Gómez-Orellana, L. & Díaz Varela, R. A. Palynological data on major Holocene climatic events in NW Iberia. Boreas 34, 381–400 (2005).
Google Scholar
Moreno, A. et al. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J. Paleolimnol. 46, 327–349 (2011).
Google Scholar
Smith, A. C. et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Sci. Rep. 6, 24745 (2016).
Google Scholar
Rossi, C., Bajo, P., Lozano, R. P. & Hellstrom, J. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quatern. Sci. Rev. 192, 71–85 (2018).
Google Scholar
Hald, M. et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quatern. Sci. Rev. 26, 3423–3440 (2007).
Google Scholar
Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. & Haywood, A. M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017).
Google Scholar
Griffiths, S. & Robinson, E. The 8.2 ka BP Holocene climate change event and human population resilience in northwest Atlantic Europe. Quatern. Int. 465, 251–257 (2018).
Google Scholar
Alday, A. et al. The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin. Quatern. Sci. Rev. 184, 85–106 (2018).
Google Scholar
González-Sampériz, P. et al. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quatern. Res. 71, 121–132 (2009).
Google Scholar
García-Martínez de Lagrán, I. et al. 8.2 ka BP paleoclimatic event and the Ebro Valley Mesolithic groups: Preliminary data from Artusia rock shelter (Unzué, Navarra, Spain). Quatern. Int. 403, 151–173 (2016).
Google Scholar
Neira Campos, A., Fuertes Prieto, N. & Herrero, A. D. The Mesolithic with geometrics south of the ‘Picos de Europa’ (Northern Iberian Peninsula): The main characteristics of the lithic industry and raw material procurement. Quatern. Int. 402, 90–99 (2016).
Google Scholar
Vidal-Encinas, J. M. & Prada-Marcos, M. E. Los hombres mesolíticos de la cueva de La Braña-Arintero (Valdelugueros, León). Jutan de Castillo y León (2010).
Jones, J. R., Marín-Arroyo, A. B., Straus, L. G. & Richards, M. P. Adaptability, resilience and environmental buffering in European Refugia during the Late Pleistocene: Insights from La Riera Cave (Asturias, Cantabria, Spain). Sci. Rep. 10, 1217 (2020).
Google Scholar
Arias Cabal, P. & Fano Martínez, M. Á. Mesolítico Geométrico o Mesolítico con geométricos? El caso de la región Cantábrica. In El Mesolítico Geométrico en la Península Ibérica (eds Utrilla, P. & Montes, L.) (Universidad de Zaragoza, 2009).
Fuertes-Prieto N, Risseto J, Gutiérrez-Zugasti I, Cuenca-Solana D, González-Morales MR. New perspectives on Mesolithic technology in northern Iberia: data from El Mazo shell midden site (Asturias, Spain). In: Foraging Assemblages: Papers Presented at the Ninth International Conference on the Mesolithic in Europe, Belgrade 2015 (eds Boric D, Antonovic D, Mihailovic B) (2020).
Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).
Google Scholar
McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late glacial and early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Philos. Trans. R. Soc. B 376, 20190724 (2020).
Google Scholar
Crowther, A. et al. Coastal subsistence, maritime trade, and the colonization of small offshore islands in eastern African prehistory. J. Island Coast. Archaeol. 11, 211–237 (2016).
Google Scholar
King, C. L. et al. Marine resource reliance in the human populations of the Atacama Desert, northern Chile—A view from prehistory. Quatern. Sci. Rev. 182, 163–174 (2018).
Google Scholar
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191 (2018).
Google Scholar
Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C. & Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 4704–4715 (2007).
Google Scholar
Fairbanks, R. G. A 17.000-year glacio-eustatic sea lever record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).
Google Scholar
Leorri, E., Cearreta, A. & Milne, G. Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: Implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quatern. Sci. Rev. 42, 59–73 (2012).
Google Scholar
Hoffman, J. S. et al. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea. Geophys. Res. Lett. 39, 2 (2012).
Google Scholar
Gutiérrez-Zugasti, I. Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacogical analysis: The case of the Cantabrian Region (Northern Spain). Archaeometry 53, 614–630 (2011).
Google Scholar
Gutiérrez, Z. I. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial (Publican, 2009).
Harris, M., Weisler, M. & Faulkner, P. A refined protocol for calculating MNI in archaeological molluscan shell assemblages: A Marshall Islands case study. J. Archaeol. Sci. 57, 168–179 (2015).
Google Scholar
Source: Ecology - nature.com