in

Human-ignited fires result in more extreme fire behavior and ecosystem impacts

  • Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    ADS 
    Article 

    Google Scholar 

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • United Nations Environment Programme. Spreading like Wildfire–The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. (United Nations Environment Programme, Nairobi, 2022).

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7, 892–910 (2019).

    ADS 
    Article 

    Google Scholar 

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    ADS 
    Article 

    Google Scholar 

  • Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150178 (2016).

    Article 

    Google Scholar 

  • Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire. (University of Washington Press, 2017).

  • Fire and Resource Assessment Program. Fire Perimeters. Available: https://frap.fire.ca.gov/frap-projects/fire-perimeters/. (California Department of Forestry & Fire Protection, 2018).

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).

    Article 

    Google Scholar 

  • Parsons, D. J. & DeBenedetti, S. H. Impact of fire suppression on a mixed-conifer forest. For. Ecol. Manag. 2, 21–33 (1979).

    Article 

    Google Scholar 

  • Vose, R., Easterling, D. R., Kunkel, K. & Wehner, M. Temperature Changes in the United States. (NASA, 2017).

  • Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stephens, S. L., Martin, R. E. & Clinton, N. E. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. For. Ecol. Manag. 251, 205–216 (2007).

    Article 

    Google Scholar 

  • Sugihara, N. G., Van Wagtendonk, J. W., Fites-Kaufman, J., Shaffer, K. E. & Thode, A. E. Fire in California’s Ecosystems. (University of California Press, 2006).

  • Jin, Y. et al. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ. Res. Lett. 10, 094005 (2015).

    ADS 
    Article 

    Google Scholar 

  • Trollope, W. in Ecological Effects of Fire In South African Ecosystems. 199–217 (Springer, 1984).

  • Byram, G. M. in Forest Fire: Control and Use (ed. Davis, K. P.) 155–182 (McGraw-Hill, 1959).

  • McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. https://doi.org/10.1111/1365-2745.13403 (2020).

  • Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).

    ADS 
    Article 

    Google Scholar 

  • Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels (USFS, 1972).

  • Hood, S. M., Varner, J. M., van Mantgem, P. & Cansler, C. A. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 13, 113004 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cattau, M. E., Wessman, C., Mahood, A., Balch, J. K. & Poulter, B. Anthropogenic and lightning‐started fires are becoming larger and more frequent over a longer season length in the USA. Glob. Ecol. Biogeogr. 29, 668–681 (2020).

    Article 

    Google Scholar 

  • Abatzoglou, J. T., Balch, J. K., Bradley, B. A. & Kolden, C. A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 27, 377–386 (2018).

    Article 

    Google Scholar 

  • Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).

    Article 

    Google Scholar 

  • van Wagtendonk, J. W. The history and evolution of wildland fire use. Fire Ecol. 3, 3–17 (2007).

    Article 

    Google Scholar 

  • Sullivan, A. L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009).

    Article 

    Google Scholar 

  • Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).

    ADS 
    Article 

    Google Scholar 

  • Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).

    ADS 
    Article 

    Google Scholar 

  • Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    ADS 
    Article 

    Google Scholar 

  • Reinhardt, E. D. First Order Fire Effects Model: FOFEM 4.0, User’s Guide. (Intermountain Forest and Range Experiment Station, Forest Service, US …, 1997).

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).

    CAS 
    Article 

    Google Scholar 

  • Pateiro-Lopez, B. & Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane v. R package version 2.2 (2019).

  • Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. theory 29, 551–559 (1983).

    MathSciNet 
    Article 

    Google Scholar 

  • Rodríguez Casal, A. & Pateiro López, B. Generalizing the Convex Hull of A Sample: the R Package alphahull. (2010).

  • Bell, D. M. et al. Multiscale divergence between Landsat-and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 13, 15 (2018).

    Article 

    Google Scholar 

  • Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).

    Article 

    Google Scholar 

  • MTBS. Monitoring Trends in Burn Severity Data Access: Fire Level Geospatial Data. (MTBS). (2018).

  • Miller, J. D. et al. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645–656 (2009).

    ADS 
    Article 

    Google Scholar 

  • Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Eng. Remote Sens. 81, 345–354 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Energy storage important to creating affordable, reliable, deeply decarbonized electricity systems

    Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda: Brachyura)