in

Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US

  • Zald, H. S. J. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 2, 1–13 (2018).

    Google Scholar 

  • Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. 114, 4582–4590 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Google Scholar 

  • Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H. & Alexandre, P. M. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1718850115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science (80-.). 313, 940–943 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).

    CAS 

    Google Scholar 

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U. S. A. 113, 11770–11775 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agee, J. K. The landscape ecology of western forest fire regimes. Northwest Sci. 72, 7569 (1993).

    Google Scholar 

  • Whitehair, L., Fulé, P. Z., Meador, A. S., Azpeleta, T. A. & Kim, Y. S. Fire regime on a cultural landscape: Navajo Nation. Ecol. Evol. 8, 9848–9858 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hessburg, P. F. et al. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc. Ecol. 30, 1805–1835 (2015).

    Google Scholar 

  • Calkin, D. E., Thompson, M. P. & Finney, M. A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2, 1–10 (2015).

    Google Scholar 

  • Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 1–20 (2020).

    Google Scholar 

  • USDA Forest Service & Department of the Interior. 2014 Quadrennial Fire Review: Final Report. (2015).

  • Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).

    Google Scholar 

  • Hamilton, M., Fischer, A. P. & Ager, A. A social-ecological network approach for understanding wildfire risk governance. Glob. Environ. Chang. 54, 113–123 (2019).

    Google Scholar 

  • Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).

    PubMed 

    Google Scholar 

  • Balch, J. K. et al. Human-started wildfires expand the fire niche across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoover, K. Federal wildfire management: Ten-year funding trends and issues (FY2011-FY2020). Congressional Research Service (2020).

  • Brown, H. The Camp Fire tragedy of 2018 in California. Fire Manag. Today 78, 11–22 (2020).

    Google Scholar 

  • Wang, D., Guan, D., Kinnon, M. M., Geng, G. & Davis, S. J. Economic footprint of California wildfires in 2018. Nat. Sustain. https://doi.org/10.1038/s41893-020-00646-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western USA. Glob. Chang. Biol. 27, 1–2 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • NIFC. National Report of Wildland Fires and Acres Burned by State. Natl. Interag. Fire Cent. 64–75 (2018).

  • Ager, A. A. et al. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 111, 102059 (2019).

    Google Scholar 

  • Palaiologou, P., Ager, A. A., Evers, C. R., Nielsen-Pincus, M. & Day, M. A. Fine-scale assessment of cross-boundary wildfire events in the western USA. Nat. Hazards Earth Syst. Sci. 6, 1755–1777 (2019).

    ADS 

    Google Scholar 

  • Evers, C. R., Ager, A. A., Nielsen-pincus, M., Palaiologou, P. & Bunzel, K. Archetypes of community wildfire exposure from national forests of the western USA. Landsc. Urban Plan. 182, 55–66 (2019).

    Google Scholar 

  • Artley, D. K. Wildland fire protection and response in the United States: the responsibilities, authorities, and roles of federal, state, local, and tribal government. Int. Assoc. Fire Chiefs 5, 1–117 (2009).

    Google Scholar 

  • USDA Forest Service. National action plan: An implementation framework for the National Cohesive Wildland Fire Management Strategy. USDA For. Serv. (2014).

  • Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS One https://doi.org/10.1371/journal.pone.0172867 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, C. J., Mccartha, E. B. & Steelman, T. A. Conflict and collaboration in wildfire management: the role of mission alignment. Public Adm. Rev. 75, 445–454 (2015).

    Google Scholar 

  • Dunn, C. J. et al. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 15, 25001 (2020).

    Google Scholar 

  • Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. U. S. A. 111, 746–751 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Whitman, E. et al. The climate space of fire regimes in north-western North America. J. Biogeogr. 42, 1736–1749 (2015).

    Google Scholar 

  • Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S.A ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).

    PubMed 

    Google Scholar 

  • Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 13750–13755 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 1089 (2016).

    Google Scholar 

  • Scott, J. H. et al. Wildfire risk to communities: spatial datasets of landscape-wide widlfire risk components for the USA. Fort Collins CO For. Serv. Res. Data Arch. 3, 159–1089 (2020).

    Google Scholar 

  • Smith, A. M. S. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ager, A. A. et al. Predicting paradise: modeling future wildfire disasters in the western USA. Sci. Total Environ. 784, 147057 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ager, A. A. et al. Wildfire exposure and fuel management on western USA national forests. J. Environ. Manag. 145, 54–70 (2014).

    Google Scholar 

  • Haas, J. R., Calkin, D. E. & Thompson, M. P. Wildfire risk transmission in the Colorado Front Range, USA. Risk Anal. 35, 226–240 (2015).

    PubMed 

    Google Scholar 

  • Stephens, S. L. & Ruth, L. W. Federal forest-fire policy in the USA. Ecol. Appl. 15, 532–542 (2005).

    Google Scholar 

  • Harrell, A. All California’s national forests, including Tahoe’s, to close as fires rage (San Francisco Chronicle, 2020).

  • Thompson, M. P., Gannon, B. M. & Caggiano, M. D. Forest roads and operational wildfire response planning. Forests 12, 1–11 (2021).

    Google Scholar 

  • Parks, S. A., Parisien, M. A., Miller, C. & Dobrowski, S. Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 9, 1–8 (2014).

    Google Scholar 

  • Scott, J. H. & Burgan, R. E. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. USDA For. Serv. Gen. Tech. Rep. RMRS GTR 2, 1–76. https://doi.org/10.2737/RMRS-GTR-153 (2005).

    Article 

    Google Scholar 

  • Keeley, J. E. & Syphard, A. D. Climate change and future fire regimes: examples from California. Geosciences 6, 129 (2016).

    Google Scholar 

  • Thompson, M. P., Dunn, C. J. & Calkin, D. E. Wildfire: systemic changes required. Science (80-.) 20, 63 (2015).

    Google Scholar 

  • North, M. et al. Reform forest fire management. Science (80-.) 3, 7–1459 (2015).

    Google Scholar 

  • Williams, J. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manag. 294, 4–10 (2013).

    Google Scholar 

  • Safford, H. D., Stevens, J. T., Merriam, K., Meyer, M. D. & Latimer, A. M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 274, 17–28 (2012).

    Google Scholar 

  • Prichard, S. J., Povak, N. A., Kennedy, M. C. & Peterson, D. W. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires. Ecol. Appl. 30, 1–22 (2020).

    Google Scholar 

  • Thompson, M. P., Riley, K. L., Loeffler, D. & Haas, J. R. Modeling fuel treatment leverage: encounter rates, risk reduction, and suppression cost impacts. Forests 8, 1–26 (2017).

    Google Scholar 

  • Boer, M. M., Price, O. F. & Bradstock, R. A. Wildfires: weigh policy effectiveness. Science (80-.) 250, 919 (2015).

    Google Scholar 

  • Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the USA. Forests 7, 7569 (2016).

    Google Scholar 

  • Brenkert-Smith, H., Champ, P. A. & Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. Soc. Nat. Resour. 19, 759–768 (2006).

    Google Scholar 

  • Reams, M. A., Haines, T. K., Renner, C. R., Wascom, M. W. & Kingre, H. Goals, obstacles and effective strategies of wildfire mitigation programs in the Wildland-Urban Interface. For. Policy Econ. 7, 818–826 (2005).

    Google Scholar 

  • Cohen, J. The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. For. Hist. Today 2008, 20–26 (2008).

    Google Scholar 

  • Caggiano, M. D., Hawbaker, T. J., Gannon, B. M. & Hoffman, C. M. Building loss in WUI disasters: evaluating the core components of the wildland–urban interface definition. Fire 3, 1–17 (2020).

    Google Scholar 

  • Steelman, T. A. & Burke, C. A. Is wildfire policy in the USA sustainable?. J. For. 105, 67–72 (2007).

    Google Scholar 

  • Syphard, A. D. & Keeley, J. E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2, 1–15 (2019).

    Google Scholar 

  • Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildl. Fire 27, 781–799 (2018).

    Google Scholar 

  • Scott, J. H., Thompson, M. P. & Calkin, D. E. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 US. Dep. Agric. For. Serv. Rocky Mt. Res. Stn. P 83, 59–67 (2013).

    Google Scholar 

  • Rodrıguez y Silva, F., O’Connor, C. D., Thompson, M. P., Ramon Molina Martinez, J. & Calkin, D. E. Modelling suppression difficulty: current and future applications. Int. J. Wildl. Fire (2020).

  • O’Connor, C. D., Calkin, D. E. & Thompson, M. P. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildl. Fire 2, 587–597 (2017).

    Google Scholar 

  • Thompson, M. P. et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests 7, 542 (2016).

    Google Scholar 

  • Thompson, M. P. et al. Prototyping a geospatial atlas for wildfire planning and management. Forests 2, 1–17 (2020).

    Google Scholar 

  • Paveglio, T. B. et al. Urban interface: adaptive capacity for wildfire. For. Sci. 61, 298–310 (2015).

    Google Scholar 

  • Haas, J. R., Calkin, D. E. & Thompson, M. P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the USA. Landsc. Urban Plan. 119, 44–53 (2013).

    Google Scholar 

  • Mockrin, M. H., Stewart, S. I., Radeloff, V. C., Hammer, R. B. & Alexandre, P. M. Adapting to wildfire: rebuilding after home loss. Soc. Nat. Resour. 28, 839–856 (2015).

    Google Scholar 

  • Haire, S. L. & McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 25, 1055–1069 (2010).

    Google Scholar 

  • Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70, 659–673 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Syphard, A. D., Brennan, T. J. & Keeley, J. E. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Sci. Rep. 2, 90–101. https://doi.org/10.1111/ddi.12827 (2019).

    Article 

    Google Scholar 

  • Steelman, T. U. S. wildfire governance as a socio-ecological problem. Ecol. Soc. 21, 386–408 (2016).

    Google Scholar 

  • Short, K. C. Spatial wildfire occurrence data for the United States, 1992-2018 [FPA_FOD_20210617], 5th edn. https://doi.org/10.2737/RDS-2013-0009.5 (Forest Service Research Data Archive, Fort Collins, CO, 2021).

    Google Scholar 

  • Short, K. C. A spatial database of wildfires in the USA, 1992–2011. Earth Syst. Sci. Data 6, 1–27 (2014).

    ADS 

    Google Scholar 

  • PRISM. (PRISM Climate Group, Oregon State University. http://www.prism.oregonstate.edu, 2020).

  • USGS. Protected areas database of the United States (PAD-US) 2.1: U.S. Geological Survey data release. (2020). https://doi.org/10.5066/P92QM3NT. Accessed 15 Nov 2020.

  • Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography (Cop.) 35, 879–888 (2012).

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).

    Article 

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Google Scholar 

  • Greenwell, B., Boehmke, B., Cunningham, J. & GBM-developers. gmb: Generalized boosted regression models. R Packag. version 2.1.8. https//CRAN.R-project.org/package=gbm (2020).

  • Hijmans, R. J., Philips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R Packag. version 1.3–3. https//CRAN.R-project.org/package=dismo (2020).


  • Source: Ecology - nature.com

    Solar-powered system offers a route to inexpensive desalination

    Nurturing human communities and natural ecosystems