Zald, H. S. J. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 2, 1–13 (2018).
Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. 114, 4582–4590 (2017).
Google Scholar
Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H. & Alexandre, P. M. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1718850115 (2018).
Google Scholar
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science (80-.). 313, 940–943 (2006).
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U. S. A. 113, 11770–11775 (2016).
Google Scholar
Agee, J. K. The landscape ecology of western forest fire regimes. Northwest Sci. 72, 7569 (1993).
Whitehair, L., Fulé, P. Z., Meador, A. S., Azpeleta, T. A. & Kim, Y. S. Fire regime on a cultural landscape: Navajo Nation. Ecol. Evol. 8, 9848–9858 (2018).
Google Scholar
Hessburg, P. F. et al. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc. Ecol. 30, 1805–1835 (2015).
Calkin, D. E., Thompson, M. P. & Finney, M. A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2, 1–10 (2015).
Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 1–20 (2020).
USDA Forest Service & Department of the Interior. 2014 Quadrennial Fire Review: Final Report. (2015).
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
Hamilton, M., Fischer, A. P. & Ager, A. A social-ecological network approach for understanding wildfire risk governance. Glob. Environ. Chang. 54, 113–123 (2019).
Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).
Google Scholar
Balch, J. K. et al. Human-started wildfires expand the fire niche across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 (2017).
Google Scholar
Hoover, K. Federal wildfire management: Ten-year funding trends and issues (FY2011-FY2020). Congressional Research Service (2020).
Brown, H. The Camp Fire tragedy of 2018 in California. Fire Manag. Today 78, 11–22 (2020).
Wang, D., Guan, D., Kinnon, M. M., Geng, G. & Davis, S. J. Economic footprint of California wildfires in 2018. Nat. Sustain. https://doi.org/10.1038/s41893-020-00646-7 (2019).
Google Scholar
Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western USA. Glob. Chang. Biol. 27, 1–2 (2021).
Google Scholar
NIFC. National Report of Wildland Fires and Acres Burned by State. Natl. Interag. Fire Cent. 64–75 (2018).
Ager, A. A. et al. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 111, 102059 (2019).
Palaiologou, P., Ager, A. A., Evers, C. R., Nielsen-Pincus, M. & Day, M. A. Fine-scale assessment of cross-boundary wildfire events in the western USA. Nat. Hazards Earth Syst. Sci. 6, 1755–1777 (2019).
Google Scholar
Evers, C. R., Ager, A. A., Nielsen-pincus, M., Palaiologou, P. & Bunzel, K. Archetypes of community wildfire exposure from national forests of the western USA. Landsc. Urban Plan. 182, 55–66 (2019).
Artley, D. K. Wildland fire protection and response in the United States: the responsibilities, authorities, and roles of federal, state, local, and tribal government. Int. Assoc. Fire Chiefs 5, 1–117 (2009).
USDA Forest Service. National action plan: An implementation framework for the National Cohesive Wildland Fire Management Strategy. USDA For. Serv. (2014).
Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS One https://doi.org/10.1371/journal.pone.0172867 (2017).
Google Scholar
Fleming, C. J., Mccartha, E. B. & Steelman, T. A. Conflict and collaboration in wildfire management: the role of mission alignment. Public Adm. Rev. 75, 445–454 (2015).
Dunn, C. J. et al. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 15, 25001 (2020).
Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. U. S. A. 111, 746–751 (2014).
Google Scholar
Whitman, E. et al. The climate space of fire regimes in north-western North America. J. Biogeogr. 42, 1736–1749 (2015).
Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S.A ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
Google Scholar
Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 13750–13755 (2017).
Google Scholar
Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 1089 (2016).
Scott, J. H. et al. Wildfire risk to communities: spatial datasets of landscape-wide widlfire risk components for the USA. Fort Collins CO For. Serv. Res. Data Arch. 3, 159–1089 (2020).
Smith, A. M. S. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).
Google Scholar
Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
Google Scholar
Ager, A. A. et al. Predicting paradise: modeling future wildfire disasters in the western USA. Sci. Total Environ. 784, 147057 (2021).
Google Scholar
Ager, A. A. et al. Wildfire exposure and fuel management on western USA national forests. J. Environ. Manag. 145, 54–70 (2014).
Haas, J. R., Calkin, D. E. & Thompson, M. P. Wildfire risk transmission in the Colorado Front Range, USA. Risk Anal. 35, 226–240 (2015).
Google Scholar
Stephens, S. L. & Ruth, L. W. Federal forest-fire policy in the USA. Ecol. Appl. 15, 532–542 (2005).
Harrell, A. All California’s national forests, including Tahoe’s, to close as fires rage (San Francisco Chronicle, 2020).
Thompson, M. P., Gannon, B. M. & Caggiano, M. D. Forest roads and operational wildfire response planning. Forests 12, 1–11 (2021).
Parks, S. A., Parisien, M. A., Miller, C. & Dobrowski, S. Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 9, 1–8 (2014).
Scott, J. H. & Burgan, R. E. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. USDA For. Serv. Gen. Tech. Rep. RMRS GTR 2, 1–76. https://doi.org/10.2737/RMRS-GTR-153 (2005).
Google Scholar
Keeley, J. E. & Syphard, A. D. Climate change and future fire regimes: examples from California. Geosciences 6, 129 (2016).
Thompson, M. P., Dunn, C. J. & Calkin, D. E. Wildfire: systemic changes required. Science (80-.) 20, 63 (2015).
North, M. et al. Reform forest fire management. Science (80-.) 3, 7–1459 (2015).
Williams, J. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manag. 294, 4–10 (2013).
Safford, H. D., Stevens, J. T., Merriam, K., Meyer, M. D. & Latimer, A. M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 274, 17–28 (2012).
Prichard, S. J., Povak, N. A., Kennedy, M. C. & Peterson, D. W. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires. Ecol. Appl. 30, 1–22 (2020).
Thompson, M. P., Riley, K. L., Loeffler, D. & Haas, J. R. Modeling fuel treatment leverage: encounter rates, risk reduction, and suppression cost impacts. Forests 8, 1–26 (2017).
Boer, M. M., Price, O. F. & Bradstock, R. A. Wildfires: weigh policy effectiveness. Science (80-.) 250, 919 (2015).
Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the USA. Forests 7, 7569 (2016).
Brenkert-Smith, H., Champ, P. A. & Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. Soc. Nat. Resour. 19, 759–768 (2006).
Reams, M. A., Haines, T. K., Renner, C. R., Wascom, M. W. & Kingre, H. Goals, obstacles and effective strategies of wildfire mitigation programs in the Wildland-Urban Interface. For. Policy Econ. 7, 818–826 (2005).
Cohen, J. The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. For. Hist. Today 2008, 20–26 (2008).
Caggiano, M. D., Hawbaker, T. J., Gannon, B. M. & Hoffman, C. M. Building loss in WUI disasters: evaluating the core components of the wildland–urban interface definition. Fire 3, 1–17 (2020).
Steelman, T. A. & Burke, C. A. Is wildfire policy in the USA sustainable?. J. For. 105, 67–72 (2007).
Syphard, A. D. & Keeley, J. E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2, 1–15 (2019).
Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildl. Fire 27, 781–799 (2018).
Scott, J. H., Thompson, M. P. & Calkin, D. E. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 US. Dep. Agric. For. Serv. Rocky Mt. Res. Stn. P 83, 59–67 (2013).
Rodrıguez y Silva, F., O’Connor, C. D., Thompson, M. P., Ramon Molina Martinez, J. & Calkin, D. E. Modelling suppression difficulty: current and future applications. Int. J. Wildl. Fire (2020).
O’Connor, C. D., Calkin, D. E. & Thompson, M. P. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildl. Fire 2, 587–597 (2017).
Thompson, M. P. et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests 7, 542 (2016).
Thompson, M. P. et al. Prototyping a geospatial atlas for wildfire planning and management. Forests 2, 1–17 (2020).
Paveglio, T. B. et al. Urban interface: adaptive capacity for wildfire. For. Sci. 61, 298–310 (2015).
Haas, J. R., Calkin, D. E. & Thompson, M. P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the USA. Landsc. Urban Plan. 119, 44–53 (2013).
Mockrin, M. H., Stewart, S. I., Radeloff, V. C., Hammer, R. B. & Alexandre, P. M. Adapting to wildfire: rebuilding after home loss. Soc. Nat. Resour. 28, 839–856 (2015).
Haire, S. L. & McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 25, 1055–1069 (2010).
Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70, 659–673 (2020).
Google Scholar
Syphard, A. D., Brennan, T. J. & Keeley, J. E. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Sci. Rep. 2, 90–101. https://doi.org/10.1111/ddi.12827 (2019).
Google Scholar
Steelman, T. U. S. wildfire governance as a socio-ecological problem. Ecol. Soc. 21, 386–408 (2016).
Short, K. C. Spatial wildfire occurrence data for the United States, 1992-2018 [FPA_FOD_20210617], 5th edn. https://doi.org/10.2737/RDS-2013-0009.5 (Forest Service Research Data Archive, Fort Collins, CO, 2021).
Short, K. C. A spatial database of wildfires in the USA, 1992–2011. Earth Syst. Sci. Data 6, 1–27 (2014).
Google Scholar
PRISM. (PRISM Climate Group, Oregon State University. http://www.prism.oregonstate.edu, 2020).
USGS. Protected areas database of the United States (PAD-US) 2.1: U.S. Geological Survey data release. (2020). https://doi.org/10.5066/P92QM3NT. Accessed 15 Nov 2020.
Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography (Cop.) 35, 879–888 (2012).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).
Google Scholar
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
Greenwell, B., Boehmke, B., Cunningham, J. & GBM-developers. gmb: Generalized boosted regression models. R Packag. version 2.1.8. https//CRAN.R-project.org/package=gbm (2020).
Hijmans, R. J., Philips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R Packag. version 1.3–3. https//CRAN.R-project.org/package=dismo (2020).
Source: Ecology - nature.com