in

Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article 

    Google Scholar 

  • Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).

  • New York Declaration on Forests (UN, 2014).

  • Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1 Resolution Adopted by the United Nations General Assembly (UN, 2015).

  • Adoption of the Paris Agreement. Proposal by the President. Draft Decision -/CP.21 (UNFCCC, 2015).

  • Hansen, A. J. et al. Toward monitoring forest ecosystem integrity within the post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12822 (2021).

    Article 

    Google Scholar 

  • Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration (IPBES, 2018).

  • First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).

  • Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Article 

    Google Scholar 

  • The IUCN Red List of Threatened Species Version 2020–1 (IUCN, 2020).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ives, A. R. & Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fletcher, R. & Fortin, M.-J. Spatial Ecology and Conservation Modeling: Applications with R (Springer, 2018). https://doi.org/10.1007/978-3-030-01989-1

  • Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pillay, R. et al. Using interview surveys and multispecies occupancy models to inform vertebrate conservation. Conserv. Biol. 36, e13832 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Agresti, A. Categorical Data Analysis (John Wiley and Sons, 2002).

  • Smith, A. C., Koper, N., Francis, C. M. & Fahrig, L. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc. Ecol. 24, 1271–1285 (2009).

    Article 

    Google Scholar 

  • Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 18, 10309–10313 (2003).

    Article 

    Google Scholar 

  • Turner, I. M. & Corlett, R. T. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tulloch, A. I. T., Barnes, M. D., Ringma, J., Fuller, R. A. & Watson, J. E. M. Understanding the importance of small patches of habitat for conservation. J. Appl. Ecol. 53, 418–429 (2016).

    Article 

    Google Scholar 

  • Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12692 (2020).

    Article 

    Google Scholar 

  • Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).

    Article 

    Google Scholar 

  • Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Betts, M. G. et al. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 6, 709–719 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280, 20122131 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bird Species Distribution Maps of the World Version 2018.1 (BirdLife International, accessed 16 August 2019).

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    Article 
    PubMed 

    Google Scholar 

  • González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).

    Article 
    PubMed 

    Google Scholar 

  • IUCN Habitats Classification Scheme Version 3.1 (IUCN, 2012).

  • Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. C. et al. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 185, 221–232 (2016).

    Article 

    Google Scholar 

  • Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Article 

    Google Scholar 

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Marco, M., Watson, J. E. M., Possingham, H. P. & Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 54, 402–411 (2017).

    Article 

    Google Scholar 

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2603–E2610 (2013).

    Article 

    Google Scholar 

  • Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).

    Article 

    Google Scholar 

  • Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).

    Article 

    Google Scholar 

  • Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).

    Article 

    Google Scholar 

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).

    Article 

    Google Scholar 

  • Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ho, L. S. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).

    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  • Bivand, R. et al. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.7-4 (2017).

  • Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.2-1 (2018).


  • Source: Ecology - nature.com

    Methane research takes on new urgency at MIT

    Ocean microbes get their diet through a surprising mix of sources, study finds