in

Hunting and persecution drive mammal declines in Iran

  • Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Environ. Sci. 1, 615469. https://doi.org/10.3389/fcosc.2020.615419 (2021).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. http://www.iucnredlist.org (2020).

  • Murray, K. A., Verde Arregoitia, L. D., Davidson, A., Di Marco, M. & Di Fonzo, M. M. I. Threat to the point: Improving the value of comparative extinction risk analysis for conservation action. Glob. Chang. Biol. 20, 483–494 (2014).

    Article 
    ADS 

    Google Scholar 

  • Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    Article 
    ADS 

    Google Scholar 

  • Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open. Sci. 3, 160498. https://doi.org/10.1098/rsos.160498 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, M. et al. The changing fates of the world’s mammals. Phil. Trans. R. Soc. B. 366, 2598–2610 (2011).

    Article 

    Google Scholar 

  • Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).

    Article 

    Google Scholar 

  • Di Marco, M. et al. Drivers of extinction risk in African mammals: The interplay of distribution state, human pressure, conservation response and species biology. Philos. Trans. R. Soc. Lond. B. 369, 1–12 (2014).

    Article 

    Google Scholar 

  • Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: Using past evidence to direct future monitoring. Proc. R. Soc. B. 282, 20150928. https://doi.org/10.1098/rspb.2015.0928 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bogoni, J. A., Ferraz, K. M. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635. https://doi.org/10.1016/j.biocon.2022.109635 (2022).

    Article 

    Google Scholar 

  • Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).

    Article 

    Google Scholar 

  • Keil, P. et al. Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2018).

    Article 

    Google Scholar 

  • Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez, J. P. The difference conservation can make: integrating knowledge to reduce extinction risk. Oryx 51, 1–2 (2017).

    Article 

    Google Scholar 

  • Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation?. Trends Ecol. Evol. 27, 167–171 (2012).

    Article 

    Google Scholar 

  • Davidson, A. D. et al. Geography of current and future global mammal extinction risk. PLoS ONE 12, e0186934. https://doi.org/10.1371/journal.pone.0186934 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collen, B., Bykova, E., Ling, S., Milner-Gulland, E. J. & Purvis, A. Extinction risk: A comparative analysis of central Asian vertebrates. Biodivers. Conserv. 15, 1859–1871 (2006).

    Article 

    Google Scholar 

  • Peñaranda, D. A. & Simonetti, J. A. Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline. Conserv. Biol. 29, 834–843 (2015).

    Article 

    Google Scholar 

  • Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article 

    Google Scholar 

  • Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).

    Article 
    CAS 

    Google Scholar 

  • Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B. 275, 1441–1448 (2008).

    Article 

    Google Scholar 

  • Yackulic, C. B., Sanderson, E. W. & Uriat, M. Anthropogenic and environmental drivers of modern range loss in large mammals. Proc. Natl. Acad. Sci. USA 108, 4024–4029 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv Lett 12, e12627. https://doi.org/10.1111/conl.12627 (2019).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. PNAS https://doi.org/10.1073/pnas.1702078114 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bodmer, R. E., Eisenberg, J. E. & Redford, K. H. Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11, 460–466 (1997).

    Article 

    Google Scholar 

  • Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. R. Soc. B. 278, 1329–1338 (2011).

    Article 

    Google Scholar 

  • Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. Roy. Soc Open Sci 3, 160252. https://doi.org/10.1098/rsos.160252 (2016).

    Article 
    ADS 

    Google Scholar 

  • Firouz, E. The complete fauna of Iran. I. B. (Tauris and Co Ltd, London, 2005).

  • Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl. Acad. Sci. USA 106, 10702–10705 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hill, J., DeVault, T. & Belant, J. Comparative influence of anthropogenic landscape pressures on cause-specific mortality of mammals. Perspect. Ecol. Conserv. 20, 38–44 (2022).

    Google Scholar 

  • DOE-GIS. Areas under protection by the Department of Environment of Iran. Department of the Environment of Iran: GIS and Remote Sensing Section (2016).

  • Kolahi, M., Sakai, T., Moriya, K. & Makhdoum, M. F. Challenges to the future development of Iran’s protected areas system. Environ. Manage. 50, 750–765 (2012).

    Article 
    ADS 

    Google Scholar 

  • Morrison, J. M., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. L. Persistence of large mammal faunas as indicators of human impact. J. Mammal. 88, 1363–1380 (2007).

    Article 

    Google Scholar 

  • Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2017).

    Article 

    Google Scholar 

  • Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56, 365–374 (2019).

    Article 

    Google Scholar 

  • Khalatbari, L., Yusefi, G. H., Martinez-Freiria, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic cheetah. Hystrix Ital. J. Mammal. 29, 145–151 (2018).

    Google Scholar 

  • Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).

    Article 

    Google Scholar 

  • Yusefi, G. H. Conservation biogeography of terrestrial mammals in Iran diversity distribution and vulnerability to extinction. Front Biogeogr 13(2), 49765. https://doi.org/10.21425/F5FBG49765 (2021).

    Article 

    Google Scholar 

  • Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).

    Article 

    Google Scholar 

  • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2021).

  • Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

    Article 

    Google Scholar 

  • Jones, K. et al. PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. https://doi.org/10.1890/08-1494.1 (2009).

    Article 

    Google Scholar 

  • González-Suárez, M., Lucas, P. M. & Revilla, E. Biases in comparative analyses of extinction risk: Mind the gap. J. Anim. Ecol. 81, 1211–1222 (2012).

    Article 

    Google Scholar 

  • Wang, Y. et al. Ecological correlates of extinction risk in Chinese birds. Ecography 41, 782–794 (2018).

    Article 

    Google Scholar 

  • Wildlife Conservation Society-WCS, and Center for International Earth Science Information Network-CIESIN, Columbia University. Last of the wild project, Version 2, 2005 (LWP-2): Global human influence index (HII) Dataset. https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (2005).

  • ESRI ArcGIS Desktop10.6. Redlands, CA: Environmental Systems Research Institute (2017).

  • Hijmans, R. J. et al. raster: geographic data analysis and modeling. https://cran.r-project.org/web/packages/raster/index.html (2018).

  • Pebesma, E. et al. rgdal: bindings for the geospatial data abstraction library. https://cran.r-project.org/web/packages/rgdal/index.html (2018).

  • Bivand, R. et al. maptools: tools for reading and handling spatial objects. https://cran.r-project.org/web/packages/maptools/ index.html (2018).

  • Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).

    Article 

    Google Scholar 

  • Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, 2002).

    Book 

    Google Scholar 

  • Gittleman, J. L. & Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).

    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodal inference in ecology and solution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    Article 
    CAS 

    Google Scholar 

  • Bartón, K. MuMIn: multi-model inference R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).


  • Source: Ecology - nature.com

    Finding community in high-energy-density physics

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)