Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).
Google Scholar
Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).
Google Scholar
Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).
Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).
Google Scholar
Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).
Google Scholar
Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).
Google Scholar
Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).
Google Scholar
Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).
Google Scholar
Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).
Google Scholar
Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).
Google Scholar
Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).
Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).
Google Scholar
Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).
Google Scholar
Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).
Google Scholar
Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).
Google Scholar
Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).
Google Scholar
Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).
Google Scholar
Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).
Google Scholar
Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).
Google Scholar
Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).
Google Scholar
Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).
Google Scholar
Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).
Google Scholar
Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).
Google Scholar
Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).
Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).
Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).
Google Scholar
Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).
Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).
Google Scholar
Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).
Google Scholar
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).
Google Scholar
Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).
Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).
Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).
Google Scholar
Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).
Google Scholar
Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).
Google Scholar
Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).
Google Scholar
Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).
Google Scholar
Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).
Google Scholar
Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).
Google Scholar
Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).
Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).
Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).
Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).
Google Scholar
Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).
Google Scholar
Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).
Google Scholar
Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).
Google Scholar
Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).
Google Scholar
Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).
Google Scholar
Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).
Google Scholar
Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).
Google Scholar
Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).
Google Scholar
Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).
Google Scholar
Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).
Google Scholar
Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).
Google Scholar
Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).
Google Scholar
Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).
Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).
Google Scholar
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).
Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).
Google Scholar
Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).
Google Scholar
Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).
Google Scholar
Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).
Google Scholar
Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).
Google Scholar
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).
Google Scholar
Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).
Google Scholar
Source: Ecology - nature.com