in

Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata

  • Baranova, M. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Int. Assoc. Plant Taxon. (IAPT) 21, 447–469 (1972).

    Google Scholar 

  • Suzuki, S., Kiyoshi, I., Saneyoshi, U., Yoshihiko, T. & Nobuhiro, T. Population differentiation and gene flow within ametapopulation of a threatened tree, Magnolia stellata (magnoliaceae). Am. J. Bot. 94, 128–136 (2007).

    Article 

    Google Scholar 

  • Tan, M. et al. Study on seed germination and seedling growth of Magnolia officinalis in different habitats. J. Ecol. Rural Environ. 34, 910–916 (2018).

    Google Scholar 

  • Zezhi, Y. et al. Study on population distribution and community structure of Magnolia sinostellata. Zhejiang For. Sci. Technol. 35, 47–52 (2015).

    Google Scholar 

  • Yu, Q. et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata. Trees 33, 11–22. https://doi.org/10.1007/s00468-018-1753-5 (2018).

    Article 

    Google Scholar 

  • Promis, A. & Allen, R. B. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest. PLoS ONE 12, e0188686. https://doi.org/10.1371/journal.pone.0188686 (2017).

    Article 

    Google Scholar 

  • Qin, Y. Effect of Light intensity and waterlogging on the physiology characteristic and the relative expression of genes in Magnolia sinostellata. 33, 11–22 (2018).

  • Chen, T. et al. Shade effects on peanut yield associate with physiological and expressional regulation on photosynthesis and sucrose metabolism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21155284 (2020).

    Article 

    Google Scholar 

  • Yao, X. et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416. https://doi.org/10.1007/s10725-017-0307-y (2017).

    Article 

    Google Scholar 

  • Wu, Y., Gong, W. & Yang, W. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 7, 9259. https://doi.org/10.1038/s41598-017-10026-5 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zhao, D., Hao, Z. & Tao, J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61, 187–196. https://doi.org/10.1016/j.plaphy.2012.10.005 (2012).

    Article 

    Google Scholar 

  • Tamaki, I. et al. Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting. Landscape Ecol. Eng. 14, 269–276. https://doi.org/10.1007/s11355-018-0348-z (2018).

    Article 

    Google Scholar 

  • Jian, W. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bot. 49, 1681–1688 (2017).

    Google Scholar 

  • Quail, P. H. The phytochrome family dissection of functional roles and signalling pathways among family members. Philos. Trans. R. Soc. B 353, 1399–1403 (1998).

    Article 

    Google Scholar 

  • Yang, F. et al. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008 (2018).

    Article 

    Google Scholar 

  • Luesse, D. R., DeBlasio, S. L. & Hangarter, R. P. Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements. J. Exp. Bot. 61, 4387–4397. https://doi.org/10.1093/jxb/erq242 (2010).

    Article 

    Google Scholar 

  • Dinakar, C., Vishwakarma, A., Raghavendra, A. S. & Padmasree, K. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems. Front. Plant Sci. 7, 68. https://doi.org/10.3389/fpls.2016.00068 (2016).

    Article 

    Google Scholar 

  • Ruban, A. V. Light harvesting control in plants. FEBS Lett. 592, 3030–3039. https://doi.org/10.1002/1873-3468.13111 (2018).

    Article 

    Google Scholar 

  • Wang, J. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bo. 49, 1681–1688 (2017).

    Google Scholar 

  • Yamori, W., Shikanai, T. & Makino, A. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci. Rep. 5, 13908. https://doi.org/10.1038/srep13908 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ng, J. & Mueller-Cajar, O. Rubisco activase remodels plant Rubisco via the large subunit N-terminus. bioRxiv https://doi.org/10.1101/2020.06.14.151407 (2020).

    Article 

    Google Scholar 

  • Zhang, Y., Liu, N., Wang, W., Sun, J. & Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1282-5 (2020).

    Article 

    Google Scholar 

  • Suzuki, Y. & Makino, A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. J. Exp. Bot. 64, 1145–1152. https://doi.org/10.1093/jxb/ers398 (2013).

    Article 

    Google Scholar 

  • Sun, J. et al. Low light stress down-regulated rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J. Integr. Agric. 13, 997–1007. https://doi.org/10.1016/s2095-3119(13)60670-x (2014).

    Article 

    Google Scholar 

  • Wu, H. Y., Liu, L. A., Shi, L., Zhang, W. F. & Jiang, C. D. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosynth. Res. 150, 313–326. https://doi.org/10.1007/s11120-021-00851-1 (2021).

    Article 

    Google Scholar 

  • Zou, D., Gao, K. & Chen, W. Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues. Photosynth. Res. 107, 159–168. https://doi.org/10.1007/s11120-010-9612-2 (2011).

    Article 

    Google Scholar 

  • Wu, Z.-F. et al. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chin. J. Plant Ecol. 38, 740–748. https://doi.org/10.3724/SP.J.1258.2014.00069 (2014).

    Article 

    Google Scholar 

  • Valladares, F. et al. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16, 395–403. https://doi.org/10.1007/s00468-002-0184-4 (2002).

    Article 

    Google Scholar 

  • Rojas-Gonzalez, J. A. et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J. Exp. Bot. 66, 2673–2689. https://doi.org/10.1093/jxb/erv062 (2015).

    Article 

    Google Scholar 

  • Lowe, H., Hobmeier, K., Moos, M., Kremling, A. & Pfluger-Grau, K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels 10, 190. https://doi.org/10.1186/s13068-017-0875-0 (2017).

    Article 

    Google Scholar 

  • Wang, B. et al. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth. Res. 126, 363–373. https://doi.org/10.1007/s11120-015-0126-9 (2015).

    Article 

    Google Scholar 

  • Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395. https://doi.org/10.1111/j.1365-2745.2006.01207.x (2007).

    Article 

    Google Scholar 

  • Lestari, D. P. & Nichols, J. D. Seedlings of subtropical rainforest species from similar successional guild show different photosynthetic and morphological responses to varying light levels. Tree Physiol. 37, 186–198. https://doi.org/10.1093/treephys/tpw088 (2017).

    Article 

    Google Scholar 

  • Wu, M., Li, Z. & Wang, J. Transcriptional analyses reveal the molecular mechanism governing shade tolerance in the invasive plant Solidago canadensis. Ecol. Evol. 10, 4391–4406. https://doi.org/10.1002/ece3.6206 (2020).

    Article 

    Google Scholar 

  • Miao, Z. Q. et al. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30, 2761–2778. https://doi.org/10.1105/tpc.18.00584 (2018).

    Article 

    Google Scholar 

  • Liu, B. et al. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol. Hortic. https://doi.org/10.1186/s43897-021-00005-w (2021).

    Article 

    Google Scholar 

  • Sun, W. et al. Mediator subunit MED25 physically interacts with phytochrome interacting factor4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol. 184, 1549–1562. https://doi.org/10.1104/pp.20.00587 (2020).

    Article 

    Google Scholar 

  • Bawa, G. et al. Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiol. Plant 170, 345–356. https://doi.org/10.1111/ppl.13158 (2020).

    Article 

    Google Scholar 

  • Potter, T. I., Rood, S. B. & Zanewich, K. P. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207, 505–511 (1999).

    Article 

    Google Scholar 

  • Ballare, C. L., Scopel, A. L. & San, R. A. Foraging for light photosensory ecology and agricultural implications. Plant Cell Environ. 20, 820–825 (1997).

    Article 

    Google Scholar 

  • Hope, E., Gracie, A., Carins-Murphy, M. R., Hudson, C. & Baxter, L. Opium poppy capsule growth and alkaloid production is constrained by shade during early floral development. Ann. Appl. Biol. 176, 296–307 (2020).

    Article 

    Google Scholar 

  • Lu, D. et al. Light deficiency inhibits growth by affecting photosynthesis efficiency as well as JA and ethylene signaling in endangered plant Magnolia sinostellata. Plants https://doi.org/10.3390/plants10112261 (2021).

    Article 

    Google Scholar 

  • Lin, W., Guo, X., Pan, X. & Li, Z. Chlorophyll composition, chlorophyll fluorescence, and grain yield change in esl mutant rice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19102945 (2018).

    Article 

    Google Scholar 

  • Sano, S. et al. Stress responses of shade-treated tea leaves to high light exposure after removal of shading. Plants (Basel) https://doi.org/10.3390/plants9030302 (2020).

    Article 

    Google Scholar 

  • Liu, D. L. et al. Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping. Sci. Rep. 9, 2716. https://doi.org/10.1038/s41598-019-39110-8 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sekhar, S. et al. Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci. Rep. 9, 5753. https://doi.org/10.1038/s41598-019-42170-5 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wegener, F., Beyschlag, W. & Werner, C. High intraspecific ability to adjust both carbon uptake and allocation under light and nutrient reduction in Halimium halimifolium L. Front. Plant Sci. 6, 609. https://doi.org/10.3389/fpls.2015.00609 (2015).

    Article 

    Google Scholar 

  • Liu, B. et al. A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. Plant Cell Environ. 44, 130–142. https://doi.org/10.1111/pce.13899 (2021).

    Article 

    Google Scholar 

  • Cookson, S. J. & Granier, C. A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana rosette leaf development reveals new components of the shade-adaptative response. Ann. Bot. 97, 443–452. https://doi.org/10.1093/aob/mcj047 (2006).

    Article 

    Google Scholar 

  • Zhong, X. M., Shi, Z. S., Li, F. H. & Huang, H. J. Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions. Photosynthetica 52, 597–603. https://doi.org/10.1007/s11099-014-0071-4 (2014).

    Article 

    Google Scholar 

  • Kittiwongwattana, C. Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata. Sci. Rep. 9, 15310. https://doi.org/10.1038/s41598-019-51677-w (2019).

    Article 
    ADS 

    Google Scholar 

  • Sagadevan, G. M. et al. Physiological and molecular insights into drought tolerance. Afr. J. Biotechnol. 1, 28–38 (2002).

    Article 

    Google Scholar 

  • Xiaotao, D. et al. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plant. 35, 1427–1438. https://doi.org/10.1007/s11738-012-1182-9 (2012).

    Article 

    Google Scholar 

  • Sofo, A., Dichio, B., Montanaro, G. & Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47, 602–608 (2009).

    Article 

    Google Scholar 

  • Zhou, Y., Zhu, J., Shao, L. & Guo, M. Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. Fitoterapia 142, 104495. https://doi.org/10.1016/j.fitote.2020.104495 (2020).

    Article 

    Google Scholar 

  • Huang, P. et al. Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci. 203–204, 98–106. https://doi.org/10.1016/j.plantsci.2012.12.019 (2013).

    Article 

    Google Scholar 

  • Vorontsov, I. I. et al. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 16, 2483–2490. https://doi.org/10.1110/ps.073029607 (2007).

    Article 

    Google Scholar 

  • Guo, M. et al. Proteomic and phosphoproteomic analyses of NaCl stress-responsive proteins in Arabidopsis roots. J. Plant Interact. 9, 396–401. https://doi.org/10.1080/17429145.2013.845262 (2013).

    Article 

    Google Scholar 

  • Smith, C. et al. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol. 52, 1222–1237. https://doi.org/10.1093/pcp/pcr073 (2011).

    Article 

    Google Scholar 

  • Johnson, K. L., Jones, B. J., Bacic, A. & Schultz, C. J. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol. 133, 1911–1925. https://doi.org/10.1104/pp.103.031237 (2003).

    Article 

    Google Scholar 

  • Merz, D. et al. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J. Exp. Bot. 68, 4583–4593. https://doi.org/10.1093/jxb/erx263 (2017).

    Article 

    Google Scholar 

  • Figueiredo, J., Silva, M. S. & Figueiredo, A. Subtilisin-like proteases in plant defence: The past, the present and beyond. Mol. Plant Pathol. 19, 1017–1028. https://doi.org/10.1111/mpp.12567 (2018).

    Article 

    Google Scholar 

  • Sintupachee, S., Promden, W., Ngamrojanavanich, N., Sitthithaworn, W. & De-Eknamkul, W. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba. Phytochemistry 118, 204–215. https://doi.org/10.1016/j.phytochem.2015.08.005 (2015).

    Article 

    Google Scholar 

  • Chen, Y. et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods https://doi.org/10.3390/foods9010066 (2020).

  • Smidansky, E. D. et al. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225, 965–976. https://doi.org/10.1007/s00425-006-0400-3 (2007).

    Article 

    Google Scholar 

  • Mathur, S., Jain, L. & Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica https://doi.org/10.1007/s11099-018-0767-y (2018).

    Article 

    Google Scholar 

  • Huang, W., Zhang, S. B. & Liu, T. Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant panax notoginseng. Front. Plant Sci. 9, 637. https://doi.org/10.3389/fpls.2018.00637 (2018).

    Article 

    Google Scholar 

  • Li, Q. et al. Quantitative trait locus (QTLs) mapping for quality traits of wheat based on high density genetic map combined with bulked segregant analysis RNA-seq (BSR-Seq) indicates that the basic 7S globulin gene is related to falling number. Front. Plant Sci. 11, 600788. https://doi.org/10.3389/fpls.2020.600788 (2020).

    Article 

    Google Scholar 

  • Hashempour, A., Ghasemnezhad, M., Sohani, M. M., Ghazvini, R. F. & Abedi, A. Effects of freezing stress on the expression of fatty acid desaturase (FAD2, FAD6 and FAD7) and beta-glucosidase (BGLC) genes in tolerant and sensitive olive cultivars. Russ. J. Plant Physiol. 66, 214–222. https://doi.org/10.1134/s1021443719020079 (2019).

    Article 

    Google Scholar 

  • Limami, M. A., Sun, L.-Y., Douat, C., Helgeson, J. & Tepfer, D. Natural genetic transformation by__Agrobacterium rhizogenes. Plant Physiol. 118, 543–550 (1998).

    Article 

    Google Scholar 

  • Devlin, P. F., Yanovsky, M. J. & Kay, S. A. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133, 1617–1629. https://doi.org/10.1104/pp.103.034397 (2003).

    Article 

    Google Scholar 

  • Lorenzo, C. D. et al. Shade delays flowering in Medicago sativa. Plant J. 99, 7–22. https://doi.org/10.1111/tpj.14333 (2019).

    Article 

    Google Scholar 

  • Rezazadeh, A., Harkess, R. & Telmadarrehei, T. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae https://doi.org/10.3390/horticulturae4040036 (2018).

    Article 

    Google Scholar 

  • Guo, C. et al. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 58, 492–502. https://doi.org/10.1111/jipb.12376 (2016).

    Article 

    Google Scholar 

  • Kapolas, G. et al. APRF1 promotes flowering under long days in Arabidopsis thaliana. Plant Sci. 253, 141–153. https://doi.org/10.1016/j.plantsci.2016.09.015 (2016).

    Article 

    Google Scholar 

  • Walla, A. et al. An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiol. 183, 1088–1109. https://doi.org/10.1104/pp.20.00087 (2020).

    Article 
    ADS 

    Google Scholar 

  • Goto, M. K. A. S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Low genetic diversity and predation threaten a rediscovered marine sponge

    Communities' awareness of afforestation and its contribution to the conservation of lizards in Dodoma, Tanzania