in

Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations

  • Gryseels, S., Bruyn, L. D., Gyselings, R., Leendertz, H. & Leirs, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 51, 272–292 (2020).

    Article 

    Google Scholar 

  • Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals: EIDs and sociality. Proc. R. Soc. B Biol. Sci. 287, 20201039 (2020).

    CAS 
    Article 

    Google Scholar 

  • Dickman, A. J. From Cheetahs to Chimpanzees: A comparative review of the drivers of human–carnivore conflict and human–primate conflict. Folia Primatol. 83, 377–387 (2013).

    Article 

    Google Scholar 

  • Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).

    Article 

    Google Scholar 

  • Cunningham, A. A. One health, emerging infectious diseases and wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 4 (2017).

    Google Scholar 

  • Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287, 443–449 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fagre, A. C. et al. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol. Lett. https://doi.org/10.1111/ele.14003 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Messenger, A. M., Barnes, A. N. & Gray, G. C. Reverse zoonotic disease transmission (Zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS One 9, 1–9 (2014).

    Google Scholar 

  • Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140107 (2015).

    Article 

    Google Scholar 

  • Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Balasubramaniam, K. N., Huffman, M. A., Sueur, C. & Macintosh, A. J. J. Primate infectious disease ecology: Insights and future directions at the human–macaque interface. In The Behavioral Ecology of the Tibetan Macaque. Fascinating Life Sciences (eds Li, J. et al.) 249–284 (Springer, 2020).

    Chapter 

    Google Scholar 

  • McCabe, C. M., Reader, S. M. & Nunn, C. L. Infectious disease, behavioural flexibility and the evolution of culture in primates. Proc. R. Soc. B Biol. Sci. 282, 20140862 (2014).

    Article 

    Google Scholar 

  • Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: Applications to disease management in eclining wildlife populations. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180211 (2019).

    Article 

    Google Scholar 

  • Engel, G. A. & Jones-Engel, L. The role of Macaca fascicularis in infectious disease transmission. In Monkeys on the Edge: Ecology and Management of Long-Tailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 183–203 (Cambridge University Press, 2011).

    Chapter 

    Google Scholar 

  • Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).

    Google Scholar 

  • Drewe, J. A. & Perkins, S. E. Disease transmission in animal social networks. In Animal Social Networks (eds Krause, J. et al.) 95–110 (Oxford University Press, 2015).

    Google Scholar 

  • Godfrey, S. S. Networks and the ecology of parasite transmission: A framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gomez, J. M., Nunn, C. L. & Verdu, M. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. 110, 7738–7741 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).

    Article 

    Google Scholar 

  • VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 83, 406–414 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B Biol. Sci. 277, 633–642 (2010).

    Article 

    Google Scholar 

  • MacIntosh, A. J. J. et al. Monkeys in the middle: Parasite transmission through the social network of a wild primate. PLoS One 7, 15–21 (2012).

    Google Scholar 

  • Epstein, J. & Axtell, R. Growing Artificial Societies: Social Science from the Bottom Up (MIT Press, 1996).

    Book 

    Google Scholar 

  • Bansal, S., Grenfell, B. T. & Meyers, L. A. When individual behaviour matters: Homogeneous and network models in epidemiology. J. R. Soc. Interface 4, 879–891 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brauer, F. Compartmental models in epidemiology, chapter 2. In Mathematical Epidemiology (eds Brauer, F. et al.) (Springer, 2008).

    MATH 
    Chapter 

    Google Scholar 

  • Carne, C., Semple, S., MacLarnon, A., Majolo, B. & Maréchal, L. Implications of tourist–macaque interactions for disease transmission. EcoHealth 14, 704–717 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface 11, 20140349 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sah, P., Mann, J. & Bansal, S. Disease implications of animal social network structure: A synthesis across social systems. J. Anim. Ecol. 87, 546–558 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Griffin, R. H. & Nunn, C. L. Community structure and the spread of infectious disease in primate social networks. Evol. Ecol. 26, 779–800 (2012).

    Article 

    Google Scholar 

  • Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fuentes, A. & Hockings, K. J. The ethnoprimatological approach in primatology. Am. J. Primatol. 72, 841–847 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, 1–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mckinney, T. A classification system for describing anthropogenic influence on nonhuman primate populations. Am. J. Primatol. 77, 715–726 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Devaux, C. A., Mediannikov, O., Medkour, H. & Raoult, D. Infectious disease risk across the growing human–non human primate interface: A review of the evidence. Front. Public Health 7, 1–22 (2019).

    Article 

    Google Scholar 

  • Kaur, T. & Singh, J. Primate-parasitic zoonoses and anthropozoonoses: A literature review. In Primate Parasite Ecology: The Dynamics and Study of Host–Parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 199–230 (Cambridge University Press, 2009).

    Google Scholar 

  • Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 3, 641 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klegarth, A. Synanthropy. In The International Encyclopedia of Primatology (Wiley, 2017). https://doi.org/10.1002/9781119179313.wbprim0448.

    Chapter 

    Google Scholar 

  • Gumert, M. D. A common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. In Monkeys on the Edge: Ecology and Management of Longtailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 3–43 (Cambridge University Press, 2011).

    Chapter 

    Google Scholar 

  • Riley, E. P. The human–macaque interface: Conservation implications of current and future overlap and conflict in Lore Lindu National Park, Sulawesi, Indonesia. Am. Anthropol. 109, 473–484 (2007).

    Article 

    Google Scholar 

  • Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16, 224–238 (2007).

    Article 

    Google Scholar 

  • Balasubramaniam, K. N. et al. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. Am. J. Primatol. 80, e227227 (2018).

    Article 

    Google Scholar 

  • Sueur, C. et al. A comparative network analysis of social style in macaques. Anim. Behav. 82(4), 845–852 (2011).

    Article 

    Google Scholar 

  • Balasubramaniam, K. N. et al. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J. Anim. Ecol. 90, 2819–2833 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Henzi, S. P. & Barrett, L. The value of grooming to female primates. Primates 40, 47–59 (1999).

    Article 

    Google Scholar 

  • Schino, G. & Aureli, F. Trade-offs in primate grooming reciprocation: Testing behavioural flexibility and correlated evolution. Biol. J. Linn. Soc. 95, 439–446 (2008).

    Article 

    Google Scholar 

  • Radhakrishna, S. & Sinha, A. Less than wild? Commensal primates and wildlife conservation. J. Biosci. 36, 749–753 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Balasubramaniam, K. N. et al. Impact of individual demographic and social factors on human–wildlife interactions: A comparative study of three macaque species. Sci. Rep. 10, 21991 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marty, P. R. et al. Time constraints imposed by anthropogenic environments alter social behaviour in long-tailed macaques. Anim. Behav. 150, 157–165 (2019).

    Article 

    Google Scholar 

  • Kaburu, S. S. K. et al. Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). Behaviour 156, 1255–1282 (2019).

    Article 

    Google Scholar 

  • Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaburu, S. S. K. et al. Rates of human–monkey interactions affect grooming behaviour among urban-dwelling rhesus macaques (Macaca mulatta). Am. J. Phys. Anthropol. 168, 92–103 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993).

    Book 

    Google Scholar 

  • Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social networks. J. Anim. Ecol. 84, 1144–1163 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rozins, C. et al. Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal. Ecol. Evol. 8, 12044–12055 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fujii, K., Jin, J., Shev, A., Beisner, B., McCowan, B. & Fushing, H. Perc: Using percolation and conductance to find information flow certainty in a direct network (R Package Version 0.1.2.) https://rdrr.io/cran/Perc/ (2016).

  • Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K. & Mulcahy, J. B. comparative investigations of social context-dependent dominance in captive chimpanzees (Pan troglodytes) and wild Tibetan macaques (Macaca thibetana). Sci. Rep. 8, 1–15 (2018).

    CAS 
    Article 

    Google Scholar 

  • McCowan, B. J. et al. Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate: A network approach. Philos. Trans. R. Soc. B 377, 20200438 (2022).

    Article 

    Google Scholar 

  • Bjornstad, O. N. Package ‘epimdr’ (2020).

  • Tuite, A. R. et al. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. CMAJ 182, 131–136 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arienzo, M. D. & Coniglio, A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf. Health 2, 57–59 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bailey, N. T. The Mathematical Theory of Epidemics (Griffin, 1957).

    Google Scholar 

  • Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Sadat, N., Bolker, B. & Brooks, M. Package ‘glmmTMB’. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf (2019).

  • Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

    ADS 
    Article 

    Google Scholar 

  • Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS One 7, e31382 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol. Conserv. 169, 136–146 (2014).

    Article 

    Google Scholar 

  • Berman, C. M. Primate kinship: Contributions from Cayo Santiago. Am. J. Primatol. 78, 63–77 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Balasubramaniam, K. N. et al. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta). PeerJ 6, e4271 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marty, P. R. et al. Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Primates 61, 245–259 (2020).

    Article 

    Google Scholar 

  • Zinsstag, J., Schelling, E., Waltner-Toews, D. & Tanner, M. From ‘one medicine’ to ‘one health’ and systemic approaches to health and well-being. Prev. Vet. Med. 101, 148–156 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schülke, O. et al. Quantifying within-group variation in sociality—covariation among metrics and patterns across primate groups and species. Behav. Ecol. Sociobiol. 76, 50 (2022).

    Article 

    Google Scholar 

  • Romano, V., Shen, M., Pansanel, J., MacIntosh, A. J. J. & Sueur, C. Social transmission in networks: Global efficiency peaks with intermediate levels of modularity. Behav. Ecol. Sociobiol. 72, 154 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    A 26-year time series of mortality and growth of the Pacific oyster C. gigas recorded along French coasts