Ehrlich, P. R. & Raven, P. H. Butterflies and plants: A study in coevolution. Evolution 18, 586 (1964).
Google Scholar
Raguso, R. A. et al. The raison d’être of chemical ecology. Ecology 96, 617–630 (2015).
Google Scholar
Kariyat, R. R. & Portman, S. L. Plant–herbivore interactions: Thinking beyond larval growth and mortality. Am. J. Bot. 103, 789–791 (2016).
Google Scholar
Raubenheimer, D. & Simpson, S. J. Nutritional ecology and foraging theory. Curr. Opin. Insect Sci. 27, 38–45 (2018).
Google Scholar
Goehring, L. & Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27, 674–685 (2002).
Google Scholar
Hahn, D. A. Larval nutrition affects lipid storage and growth, but not protein or carbohydrate storage in newly eclosed adults of the grasshopper Schistocerca americana. J. Insect Physiol. 51, 1210–1219 (2005).
Google Scholar
Portman, S. L., Kariyat, R. R., Johnston, M. A., Stephenson, A. G. & Marden, J. H. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct. Ecol. 29, 328–337 (2015).
Google Scholar
Johnson, C. G. Physiological factors in insect migration by flight. Nature 198, 423–427 (1963).
Google Scholar
Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).
Google Scholar
Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–231 (1997).
Google Scholar
Marden, J. H. et al. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history. J. Exp. Biol. 211, 3653–3660 (2008).
Google Scholar
Raguso, R. A., Ojeda-Avila, T., Desai, S., Jurkiewicz, M. A. & Arthur Woods, H. The influence of larval diet on adult feeding behaviour in the tobacco hornworm moth, Manduca sexta. J. Insect Physiol. 53, 923–932 (2007).
Google Scholar
Cease, A. J. et al. Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus). R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.161039 (2017).
Reichstein, T., Von Euw, J., Parsons, J. A. & Rothschild, M. Heart poisons in the monarch butterfly. Science 161, 861–866 (1968).
Google Scholar
Brower, L. P., Ryerson, W. N., Coppinger, L. L. & Glazier, S. C. Ecological chemistry and the palatability spectrum. Science 161, 1349–1351 (1968).
Google Scholar
Young, A. M. An evolutionary-ecological model of the evolution of migratory behavior in the Monarch Butterfly, and its absence in the Queen Butterfly. Acta Biotheor. 31, 219–237 (1982).
Google Scholar
Agrawal, A. A. Monarchs and Milkweed: A Migrating Butterfly, a Poisonous Plant, and Their Remarkable Story of Coevolution. (Princeton University Press, 2017).
Batalden, R. V. & Oberhauser, K. S. Potential changes in eastern north American monarch migration in response to an introduced Milkweed, Asclepias curassavica. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly 215–224 (2015).
Tyler Flockhart, D. T. et al. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. Proc. R. Soc. B Biol. Sci. 280, 20131087 (2013).
Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography. 41, 278–290 (2018).
Google Scholar
Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).
Google Scholar
Borders, B. & Lee-Mäder, B. B. Project milkweed. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly. pp.190-196 (Cornell University press, 2015).
Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G. & Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. N. Phytologist 194, 28–45 (2012).
Google Scholar
Malcolm, S. B. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5–6, 101–117 (1994).
Google Scholar
Pocius, V. M., Debinski, D. M., Bidne, K. G., Hellmich, R. L. & Hunter, F. K. Performance of early Instar Monarch Butterflies (Danaus plexippus L.) on nine Milkweed species native to Iowa. J. Lepid. Soc. 71, 153–161 (2017).
Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).
Google Scholar
Zalucki, M. P., Brower, L. P. & Alonso-M, A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol. Entomol. 26, 212–224 (2001).
Google Scholar
Agrawal, A. A., Hastings, A. P., Patrick, E. T. & Knight, A. C. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.). J. Chem. Ecol. 40, 717–729 (2014).
Google Scholar
Agrawal, A. A., Ali, J. G., Rasmann, S. & Fishbein, M. Macroevolutionary trends in the defense of milkweeds against monarchs. Monarch. a Chang. World Biol. Conserv. Iconic Insect. Cornell University Press, Ithaca, NY. pp. 47–59 (2011).
Pocius, V. M. et al. Milkweed matters: Monarch butterfly (Lepidoptera: Nymphalidae) survival and development on nine midwestern milkweed species. Environ. Entomol. 46, 1098–1105 (2017).
Google Scholar
Petschenka, G. et al. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the na+/k+-atpase of milkweed butterflies (lepidoptera: Danaini). Evolution (N. Y). 67, 2753–2761 (2013).
Google Scholar
Agrawal, A. A. et al. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc. Natl Acad. Sci. USA 118, e2024463118 (2021).
Google Scholar
Marden, J. H. Variability in the size, composition, and function of insect flight muscles. Annu. Rev. Physiol. 62, 157–178 (2000).
Google Scholar
Bicudo, J. E. P. W., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds. Ecological and Environmental Physiology of Birds 3 (Oxford University Press, 2010).
Bailey, E. Biochemistry of Insect Flight. in Insect Biochemistry and Function. pp. 89–176 (Springer, 1975).
Dudley, R. The biomechanics of insect flight: form, function, evolution. Annals of the Entomological Society of America 93 (Princeton University Press, 2000).
Solensky, M. J. Overview of monarch migration. in The Monarch Butterfly: Biology and Conservation 79–83 (2004).
Urquhart, F. A. & Urquhart, N. R. Monarch butterfly (Danaus plexippus L.) overwintering population in Mexico (Lep. Danaidae). Atalanta 7, 56–61 (1976).
Brower, L. P. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J. – Lepid. Soc. 49, 304–385 (1995).
Fisher, K. E., Adelman, J. S. & Bradbury, S. P. Employing Very High Frequency (VHF) radio telemetry to recreate monarch butterfly flight paths. Environ. Entomol. 49, 312–323 (2020).
Google Scholar
Reppert, S. M. & de Roode, J. C. Demystifying monarch butterfly migration. Curr. Biol. 28, R1009–R1022 (2018).
Google Scholar
Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 1–14 (2009).
Heinze, S. & Reppert, S. M. Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. J. Comp. Neurol. 520, 1599–1628 (2012).
Google Scholar
Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317–321 (2014).
Google Scholar
Soule, A. J., Decker, L. E. & Hunter, M. D. Effects of diet and temperature on monarch butterfly wing morphology and flight ability. J. Insect Conserv. 24, 961–975 (2020).
Google Scholar
Decker, L. E., Soule, A. J., de Roode, J. C. & Hunter, M. D. Phytochemical changes in milkweed induced by elevated CO2 alter wing morphology but not toxin sequestration in monarch butterflies. Funct. Ecol. 33, 411–421 (2019).
Google Scholar
Heinrich, B. Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. Exp. Biol. 54, 141–152 (1971).
Google Scholar
Nicolson, S. W. & Louw, G. N. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287–296 (1982).
Google Scholar
Rothe, U. & Nachtigall, W. Flight of the honey bee IV. J. Comp. Physiol. B 158, 711–718 (1989).
Google Scholar
Nachtigall, W., Hanauer-Thieser, U. & Mörz, M. Flight of the honey bee VII: Metabolic power versus flight speed relation. J. Comp. Physiol. B 165, 484–489 (1995).
Google Scholar
Niven, J. E. & Scharlemann, J. P. W. Do insect metabolic rates at rest and during flight scale with body mass? Biol. Lett. 1, 346–349 (2005).
Google Scholar
Zalucki, M. P., Parry, H. R. & Zalucki, J. M. Movement and egg laying in Monarchs: To move or not to move, that is the equation. Austral. Ecol. 41, 154–167 (2016).
Google Scholar
Marden, J. H. & Chai, Peng Aerial predation and butterfly design: How palatability, mimicry, and the need for evasive flight constrain mass allocation. Am. Nat. 138, 15–36 (1991).
Google Scholar
Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).
Google Scholar
Petschenka, G. & Agrawal, A. A. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc. R. Soc. B Biol. Sci. 282, 20151865 (2015).
Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: Natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14, 17–24 (2016).
Google Scholar
Tan, W. H., Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. The effects of milkweed induced defense on parasite resistance in monarch butterflies, Danaus plexippus. J. Chem. Ecol. 44, 1040–1044 (2018).
Google Scholar
Brower, L. P. & Glazier, S. C. Localization of heart poisons in the monarch butterfly. Science 188, 19–25 (1975).
Google Scholar
Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26, 547–555 (2001).
Google Scholar
Zalucki, M. P., Malcolm, S. B., Hanlon, C. C. & Paine, T. D. First-instar monarch larval growth and survival on milkweeds in Southern California: Effects of latex, leaf hairs and cardenolides. Chemoecology 22, 75–88 (2012).
Google Scholar
Ziegler, R. & Van Antwerpen, R. Lipid uptake by insect oocytes. Insect Biochem. Mol. Biol. 36, 264–272 (2006).
Beenakkers, A. M. T., Van der Horst, D. J. & Van Marrewijk, W. J. A. Insect flight muscle metabolism. Insect Biochem. 14, 243–260 (1984).
Google Scholar
Beall, G. The fat content of a butterfly, Danaus Plexippus Linn., as affected by migration. Ecology 29, 80–94 (1948).
Google Scholar
James, D. G. Phenology of weight, moisture and energy reserves of Australian monarch butterflies, Danaus plexippus. Ecol. Entomol. 9, 421–428 (1984).
Google Scholar
Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).
Google Scholar
Hines, W. J. W. & Smith, M. J. H. Some aspects of intermediary metabolism in the desert locust (Schistocerca gregaria Forskål). J. Insect Physiol. 9, 463–468 (1963).
Google Scholar
Inagaki, S. & Yamashita, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem. 16, 327–331 (1986).
Google Scholar
Venkatesh, K. & Morrison, P. E. Studies of weight changes and amount of food ingested by the stable fly, stomoxys calcitrans (Diptera: Muscidae). Can. Entomol. 112, 141–149 (1980).
Google Scholar
Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).
Google Scholar
Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84, 2788–2794 (2003).
Google Scholar
Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).
Google Scholar
Majewska, A. A. & Altizer, S. Exposure to Non-Native Tropical Milkweed Promotes Reproductive Development in Migratory Monarch Butterflies. Insects 10, 253 (2019).
Howard, E., Aschen, H. & Davis, A. K. Citizen science observations of monarch butterfly overwintering in the Southern United States. Psyche: A Journal of Entomology 2010, https://doi.org/10.1155/2010/689301 (2010).
Satterfield, D. A., Maerz, J. C. & Altizer, S. Loss of migratory behaviour increases infection risk for a butterfly host. Proc. R. Soc. B Biol. Sci. 282, 20141734 (2015).
Petschenka, G. et al. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front. Plant Sci. 9, 1424 (2018).
Google Scholar
Jones, P. L., Petschenka, G., Flacht, L. & Agrawal, A. A. Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 45, 264–277 (2019).
Google Scholar
Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J. Anim. Ecol. 85, 1246–1254 (2016).
Google Scholar
Lederhouse, R. C. The effect of female mating frequency on egg fertility in the black swallowtail, Papilio polyxenes asterius (Papilionidae). J. Lepid. Soc. 35, 266–277 (1981).
Jones, R. E., Hart, J. R. & Bull, G. D. Temperature, size and egg production in the Cabbage Butterfly, Pieris rapae L. Aust. J. Zool. 30, 159–168 (1982).
Google Scholar
Haukioja, E. & Neuvonen, S. The relationship between size and reproductive potential in male and female Epirrita autumnata (Lep., Geometridae). Ecol. Entomol. 10, 267–270 (1985).
Google Scholar
Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125–139 (2000).
Google Scholar
Masters, A. R., Malcolm, S. B. & Brower, L. P. Monarch butterfly (Danaus plexippus) thermoregulatory behavior and adaptations for overwintering in Mexico. Ecology 69, 458–467 (1988).
Google Scholar
Kammer, A. E. Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus (L.). Z. Vgl. Physiol. 68, 334–344 (1970).
Google Scholar
Pendar, H. & Socha, J. J. Estimation of instantaneous gas exchange in flow-through respirometry systems: A modern revision of bartholomew’s ztransform method. PLoS One 10, e0139508 (2015).
Google Scholar
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2008).
Alonso-Mejía, A., Rendon-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: Implications for conservation. Ecol. Appl. 7, 934–947 (1997).
Google Scholar
Diaz, R., Overholt, W. A., Hahn, D. & Samayoa, A. C. Diapause induction in Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple in Florida. Ann. Entomol. Soc. Am. 104, 1319–1326 (2011).
Google Scholar
Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63, 425–457 (1993).
Google Scholar
Fink, L. S. & Brower, L. P. Birds can overcome the cardenolide defence of monarch butterflies in Mexico. Nature 291, 67–70 (1981).
Google Scholar
Ali, J. G. & Agrawal, A. A. Trade-offs and tritrophic consequences of host shifts in specialized root herbivores. Funct. Ecol. 31, 153–160 (2017).
Google Scholar
Woodson, R. E. The North American Species of Asclepias L. Ann. Mo. Bot. Gard. 41, 1 (1954).
Google Scholar
NRCS USDA. The PLANTS Database. National Plant Data Center. http://plants.usda.gov (2006).
Agrawal, A. A., Salminen, J. P. & Fishbein, M. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): Evidence for escalation. Evolution (N. Y). 63, 663–673 (2009).
Google Scholar
Pocius, V. M. et al. Monarch butterflies show differential utilization of nine midwestern milkweed species. Front. Ecol. Evol. 6, 169 (2018).
Pocius, V. M., Debinski, D. M., Pleasants, J. M., Bidne, K. G. & Hellmich, R. L. Monarch butterflies do not place all of their eggs in one basket: Oviposition on nine Midwestern milkweed species. Ecosphere 9, e02064 (2018).
Google Scholar
Ladner, D. T. & Altizer, S. Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species. Entomol. Exp. Appl. 116, 9–20 (2005).
Google Scholar
Borders, B. A guide to the native milkweeds of Oregon. Xerces Soc. Invertebr. Conserv. www.xerces.org, 5, 12-23 (2012).
Source: Ecology - nature.com