in

Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies

  • Ehrlich, P. R. & Raven, P. H. Butterflies and plants: A study in coevolution. Evolution 18, 586 (1964).

    Article 

    Google Scholar 

  • Raguso, R. A. et al. The raison d’être of chemical ecology. Ecology 96, 617–630 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Kariyat, R. R. & Portman, S. L. Plant–herbivore interactions: Thinking beyond larval growth and mortality. Am. J. Bot. 103, 789–791 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Raubenheimer, D. & Simpson, S. J. Nutritional ecology and foraging theory. Curr. Opin. Insect Sci. 27, 38–45 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Goehring, L. & Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27, 674–685 (2002).

    Article 

    Google Scholar 

  • Hahn, D. A. Larval nutrition affects lipid storage and growth, but not protein or carbohydrate storage in newly eclosed adults of the grasshopper Schistocerca americana. J. Insect Physiol. 51, 1210–1219 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Portman, S. L., Kariyat, R. R., Johnston, M. A., Stephenson, A. G. & Marden, J. H. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct. Ecol. 29, 328–337 (2015).

    Article 

    Google Scholar 

  • Johnson, C. G. Physiological factors in insect migration by flight. Nature 198, 423–427 (1963).

    Article 

    Google Scholar 

  • Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).

    Article 

    Google Scholar 

  • Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–231 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marden, J. H. et al. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history. J. Exp. Biol. 211, 3653–3660 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raguso, R. A., Ojeda-Avila, T., Desai, S., Jurkiewicz, M. A. & Arthur Woods, H. The influence of larval diet on adult feeding behaviour in the tobacco hornworm moth, Manduca sexta. J. Insect Physiol. 53, 923–932 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cease, A. J. et al. Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus). R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.161039 (2017).

  • Reichstein, T., Von Euw, J., Parsons, J. A. & Rothschild, M. Heart poisons in the monarch butterfly. Science 161, 861–866 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brower, L. P., Ryerson, W. N., Coppinger, L. L. & Glazier, S. C. Ecological chemistry and the palatability spectrum. Science 161, 1349–1351 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Young, A. M. An evolutionary-ecological model of the evolution of migratory behavior in the Monarch Butterfly, and its absence in the Queen Butterfly. Acta Biotheor. 31, 219–237 (1982).

    Article 

    Google Scholar 

  • Agrawal, A. A. Monarchs and Milkweed: A Migrating Butterfly, a Poisonous Plant, and Their Remarkable Story of Coevolution. (Princeton University Press, 2017).

  • Batalden, R. V. & Oberhauser, K. S. Potential changes in eastern north American monarch migration in response to an introduced Milkweed, Asclepias curassavica. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly 215–224 (2015).

  • Tyler Flockhart, D. T. et al. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. Proc. R. Soc. B Biol. Sci. 280, 20131087 (2013).

  • Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography. 41, 278–290 (2018).

    Article 

    Google Scholar 

  • Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).

    Article 

    Google Scholar 

  • Borders, B. & Lee-Mäder, B. B. Project milkweed. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly. pp.190-196 (Cornell University press, 2015).

  • Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G. & Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. N. Phytologist 194, 28–45 (2012).

    CAS 
    Article 

    Google Scholar 

  • Malcolm, S. B. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5–6, 101–117 (1994).

    Article 

    Google Scholar 

  • Pocius, V. M., Debinski, D. M., Bidne, K. G., Hellmich, R. L. & Hunter, F. K. Performance of early Instar Monarch Butterflies (Danaus plexippus L.) on nine Milkweed species native to Iowa. J. Lepid. Soc. 71, 153–161 (2017).

    Google Scholar 

  • Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zalucki, M. P., Brower, L. P. & Alonso-M, A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol. Entomol. 26, 212–224 (2001).

    Article 

    Google Scholar 

  • Agrawal, A. A., Hastings, A. P., Patrick, E. T. & Knight, A. C. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.). J. Chem. Ecol. 40, 717–729 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Agrawal, A. A., Ali, J. G., Rasmann, S. & Fishbein, M. Macroevolutionary trends in the defense of milkweeds against monarchs. Monarch. a Chang. World Biol. Conserv. Iconic Insect. Cornell University Press, Ithaca, NY. pp. 47–59 (2011).

  • Pocius, V. M. et al. Milkweed matters: Monarch butterfly (Lepidoptera: Nymphalidae) survival and development on nine midwestern milkweed species. Environ. Entomol. 46, 1098–1105 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Petschenka, G. et al. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the na+/k+-atpase of milkweed butterflies (lepidoptera: Danaini). Evolution (N. Y). 67, 2753–2761 (2013).

    CAS 

    Google Scholar 

  • Agrawal, A. A. et al. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc. Natl Acad. Sci. USA 118, e2024463118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marden, J. H. Variability in the size, composition, and function of insect flight muscles. Annu. Rev. Physiol. 62, 157–178 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bicudo, J. E. P. W., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds. Ecological and Environmental Physiology of Birds 3 (Oxford University Press, 2010).

  • Bailey, E. Biochemistry of Insect Flight. in Insect Biochemistry and Function. pp. 89–176 (Springer, 1975).

  • Dudley, R. The biomechanics of insect flight: form, function, evolution. Annals of the Entomological Society of America 93 (Princeton University Press, 2000).

  • Solensky, M. J. Overview of monarch migration. in The Monarch Butterfly: Biology and Conservation 79–83 (2004).

  • Urquhart, F. A. & Urquhart, N. R. Monarch butterfly (Danaus plexippus L.) overwintering population in Mexico (Lep. Danaidae). Atalanta 7, 56–61 (1976).

    Google Scholar 

  • Brower, L. P. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J. – Lepid. Soc. 49, 304–385 (1995).

    Google Scholar 

  • Fisher, K. E., Adelman, J. S. & Bradbury, S. P. Employing Very High Frequency (VHF) radio telemetry to recreate monarch butterfly flight paths. Environ. Entomol. 49, 312–323 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Reppert, S. M. & de Roode, J. C. Demystifying monarch butterfly migration. Curr. Biol. 28, R1009–R1022 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 1–14 (2009).

  • Heinze, S. & Reppert, S. M. Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. J. Comp. Neurol. 520, 1599–1628 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317–321 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Soule, A. J., Decker, L. E. & Hunter, M. D. Effects of diet and temperature on monarch butterfly wing morphology and flight ability. J. Insect Conserv. 24, 961–975 (2020).

    Article 

    Google Scholar 

  • Decker, L. E., Soule, A. J., de Roode, J. C. & Hunter, M. D. Phytochemical changes in milkweed induced by elevated CO2 alter wing morphology but not toxin sequestration in monarch butterflies. Funct. Ecol. 33, 411–421 (2019).

    Article 

    Google Scholar 

  • Heinrich, B. Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. Exp. Biol. 54, 141–152 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nicolson, S. W. & Louw, G. N. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287–296 (1982).

    Article 

    Google Scholar 

  • Rothe, U. & Nachtigall, W. Flight of the honey bee IV. J. Comp. Physiol. B 158, 711–718 (1989).

    Article 

    Google Scholar 

  • Nachtigall, W., Hanauer-Thieser, U. & Mörz, M. Flight of the honey bee VII: Metabolic power versus flight speed relation. J. Comp. Physiol. B 165, 484–489 (1995).

    Article 

    Google Scholar 

  • Niven, J. E. & Scharlemann, J. P. W. Do insect metabolic rates at rest and during flight scale with body mass? Biol. Lett. 1, 346–349 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zalucki, M. P., Parry, H. R. & Zalucki, J. M. Movement and egg laying in Monarchs: To move or not to move, that is the equation. Austral. Ecol. 41, 154–167 (2016).

    Article 

    Google Scholar 

  • Marden, J. H. & Chai, Peng Aerial predation and butterfly design: How palatability, mimicry, and the need for evasive flight constrain mass allocation. Am. Nat. 138, 15–36 (1991).

    Article 

    Google Scholar 

  • Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petschenka, G. & Agrawal, A. A. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc. R. Soc. B Biol. Sci. 282, 20151865 (2015).

  • Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: Natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14, 17–24 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Tan, W. H., Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. The effects of milkweed induced defense on parasite resistance in monarch butterflies, Danaus plexippus. J. Chem. Ecol. 44, 1040–1044 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brower, L. P. & Glazier, S. C. Localization of heart poisons in the monarch butterfly. Science 188, 19–25 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26, 547–555 (2001).

    Article 

    Google Scholar 

  • Zalucki, M. P., Malcolm, S. B., Hanlon, C. C. & Paine, T. D. First-instar monarch larval growth and survival on milkweeds in Southern California: Effects of latex, leaf hairs and cardenolides. Chemoecology 22, 75–88 (2012).

    Article 

    Google Scholar 

  • Ziegler, R. & Van Antwerpen, R. Lipid uptake by insect oocytes. Insect Biochem. Mol. Biol. 36, 264–272 (2006).

  • Beenakkers, A. M. T., Van der Horst, D. J. & Van Marrewijk, W. J. A. Insect flight muscle metabolism. Insect Biochem. 14, 243–260 (1984).

    CAS 
    Article 

    Google Scholar 

  • Beall, G. The fat content of a butterfly, Danaus Plexippus Linn., as affected by migration. Ecology 29, 80–94 (1948).

    Article 

    Google Scholar 

  • James, D. G. Phenology of weight, moisture and energy reserves of Australian monarch butterflies, Danaus plexippus. Ecol. Entomol. 9, 421–428 (1984).

    Article 

    Google Scholar 

  • Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).

    Article 

    Google Scholar 

  • Hines, W. J. W. & Smith, M. J. H. Some aspects of intermediary metabolism in the desert locust (Schistocerca gregaria Forskål). J. Insect Physiol. 9, 463–468 (1963).

    CAS 
    Article 

    Google Scholar 

  • Inagaki, S. & Yamashita, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem. 16, 327–331 (1986).

    CAS 
    Article 

    Google Scholar 

  • Venkatesh, K. & Morrison, P. E. Studies of weight changes and amount of food ingested by the stable fly, stomoxys calcitrans (Diptera: Muscidae). Can. Entomol. 112, 141–149 (1980).

    Article 

    Google Scholar 

  • Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84, 2788–2794 (2003).

    Article 

    Google Scholar 

  • Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Majewska, A. A. & Altizer, S. Exposure to Non-Native Tropical Milkweed Promotes Reproductive Development in Migratory Monarch Butterflies. Insects 10, 253 (2019).

  • Howard, E., Aschen, H. & Davis, A. K. Citizen science observations of monarch butterfly overwintering in the Southern United States. Psyche: A Journal of Entomology 2010, https://doi.org/10.1155/2010/689301 (2010).

  • Satterfield, D. A., Maerz, J. C. & Altizer, S. Loss of migratory behaviour increases infection risk for a butterfly host. Proc. R. Soc. B Biol. Sci. 282, 20141734 (2015).

  • Petschenka, G. et al. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front. Plant Sci. 9, 1424 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, P. L., Petschenka, G., Flacht, L. & Agrawal, A. A. Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 45, 264–277 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J. Anim. Ecol. 85, 1246–1254 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Lederhouse, R. C. The effect of female mating frequency on egg fertility in the black swallowtail, Papilio polyxenes asterius (Papilionidae). J. Lepid. Soc. 35, 266–277 (1981).

    Google Scholar 

  • Jones, R. E., Hart, J. R. & Bull, G. D. Temperature, size and egg production in the Cabbage Butterfly, Pieris rapae L. Aust. J. Zool. 30, 159–168 (1982).

    Article 

    Google Scholar 

  • Haukioja, E. & Neuvonen, S. The relationship between size and reproductive potential in male and female Epirrita autumnata (Lep., Geometridae). Ecol. Entomol. 10, 267–270 (1985).

    Article 

    Google Scholar 

  • Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125–139 (2000).

    Article 

    Google Scholar 

  • Masters, A. R., Malcolm, S. B. & Brower, L. P. Monarch butterfly (Danaus plexippus) thermoregulatory behavior and adaptations for overwintering in Mexico. Ecology 69, 458–467 (1988).

    Article 

    Google Scholar 

  • Kammer, A. E. Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus (L.). Z. Vgl. Physiol. 68, 334–344 (1970).

    Article 

    Google Scholar 

  • Pendar, H. & Socha, J. J. Estimation of instantaneous gas exchange in flow-through respirometry systems: A modern revision of bartholomew’s ztransform method. PLoS One 10, e0139508 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2008).

  • Alonso-Mejía, A., Rendon-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: Implications for conservation. Ecol. Appl. 7, 934–947 (1997).

    Article 

    Google Scholar 

  • Diaz, R., Overholt, W. A., Hahn, D. & Samayoa, A. C. Diapause induction in Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple in Florida. Ann. Entomol. Soc. Am. 104, 1319–1326 (2011).

    Article 

    Google Scholar 

  • Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63, 425–457 (1993).

    Article 

    Google Scholar 

  • Fink, L. S. & Brower, L. P. Birds can overcome the cardenolide defence of monarch butterflies in Mexico. Nature 291, 67–70 (1981).

    CAS 
    Article 

    Google Scholar 

  • Ali, J. G. & Agrawal, A. A. Trade-offs and tritrophic consequences of host shifts in specialized root herbivores. Funct. Ecol. 31, 153–160 (2017).

    Article 

    Google Scholar 

  • Woodson, R. E. The North American Species of Asclepias L. Ann. Mo. Bot. Gard. 41, 1 (1954).

    Article 

    Google Scholar 

  • NRCS USDA. The PLANTS Database. National Plant Data Center. http://plants.usda.gov (2006).

  • Agrawal, A. A., Salminen, J. P. & Fishbein, M. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): Evidence for escalation. Evolution (N. Y). 63, 663–673 (2009).

    CAS 

    Google Scholar 

  • Pocius, V. M. et al. Monarch butterflies show differential utilization of nine midwestern milkweed species. Front. Ecol. Evol. 6, 169 (2018).

  • Pocius, V. M., Debinski, D. M., Pleasants, J. M., Bidne, K. G. & Hellmich, R. L. Monarch butterflies do not place all of their eggs in one basket: Oviposition on nine Midwestern milkweed species. Ecosphere 9, e02064 (2018).

    Article 

    Google Scholar 

  • Ladner, D. T. & Altizer, S. Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species. Entomol. Exp. Appl. 116, 9–20 (2005).

    Article 

    Google Scholar 

  • Borders, B. A guide to the native milkweeds of Oregon. Xerces Soc. Invertebr. Conserv. www.xerces.org, 5, 12-23 (2012).


  • Source: Ecology - nature.com

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Solar-powered desalination device wins MIT $100K competition