in

Impacts of the US southeast wood pellet industry on local forest carbon stocks

  • European Commission Directorate General for Research and Innovation. A sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy (Directorate General for Research and Innovation, 2018).

    Google Scholar 

  • Teitelbaum, L., Boldt, C. & Patermann, C. Global Bioeconomy Policy Report (IV): A Decade of Bioeconomy policy (International Advisory Council on Global Bioeconomy, 2020).

    Google Scholar 

  • European Parliament; European Council. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018). (Online). http://data.europa.eu/eli/dir/2018/2001/oj.

  • European Parliament; European Council. Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources (2009). (Online). http://data.europa.eu/eli/dir/2009/28/oj.

  • Glasenapp, S., & McCusker, A. Wood energy data: the joint wood, in Wood Energy in the ECE Region: Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America, Geneva, United Nations’ Economic Commission for Europe: ECE/TIM/SP/42, 12–29 (2018).

  • Eurostat. Wood Products—Production and Trade (2021). (Online). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Wood-based_industries. Accessed 10 9 2021.

  • Food and Agriculture Organization of the United Nations. FAOSTAT: Forestry Production and Trade (2021). (Online). http://www.fao.org/faostat/en/#data. Accessed 13 September 2021.

  • The Intergovernmental Panel on Climate Change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (PCC Task Force on National Greenhouse Gas Inventories, 2019).

    Google Scholar 

  • European Parliament; European Council. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 Supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council as Regards the Determination of High Indirect Land-Use Change-Risk (2018) (Online). fttps://eur-lex.europa.eu/eli/reg_del/2019/807/oj.

  • de Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 5280 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Searchinger, T. et al. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 3741 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galik, C. S. & Abt, R. C. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8, 658–669 (2016).

    Google Scholar 

  • Favero, A. D. & Sohngen, B. Forests: Carbon sequestration, biomass energy, or both?. Sci. Adv. 6(13), eaay6792 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowie, A. et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB-Bioenergy 13, 1210–1231 (2021).

    Google Scholar 

  • Camia, A, Jonsson, G. J. R., Robert, N., Cazzaniga, N., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo, J., & Mubareka, S. The Use of Woody Biomass for Energy Production in the EU (European Commission, Joint Research Center, 2021).

  • Aguilar, F. X., Mirzaee, A., McGarvey, R., Shifley, S. & Burtraw, D. Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Sci. Rep. 10, 18607 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dale, V., Parish, E., Kline, K. & Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States?. For Ecol Manag 396, 143–14 (2017).

    Google Scholar 

  • Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • FORISK Consulting. U.S. Wood Bioenergy Database (2020). (Online). https://forisk.com/. Accessed 2020.

  • Domke, G. et al. Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecol. Appl. 27(4), 1223–1235 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Python Org. Python Programming Language (2022) (Online). https://www.python.org/. Accessed 1 January 2018.

  • STATA. Stata: statistical software for data science (2022) (Online). https://www.stata.com/. Accessed 1 January 2018.

  • QGIS. Free and Open Source Geographic Information System (2021). (Online). https://qgis.org/en/site/.

  • US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program (2020). (Online). https://www.fia.fs.fed.us/.

  • Burrill, E. A., Wilson, A. M., Turner, J. A., Pugh, S. A., Menlove, J., Christiansen, G., Conkling, B., & David, W. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (US Department of Agriculture, US Forest Service, 2018).

  • Ahmed, M. et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 199, 158–171 (2017).

    Google Scholar 

  • Timilsina, N. et al. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manag. 114, 293–302 (2012).

    Google Scholar 

  • Coulston, J., Ritters, K., McRoberts, R., Reams, G. & Smith, W. True versus perturbed forest inventory plot locations for modeling: A simulation study. Can. J. For. Res. 36, 801–807 (2006).

    Google Scholar 

  • Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 83(3), 705–710 (2001).

    MathSciNet 

    Google Scholar 

  • Strange-Olesen, A., Bager, S., Kittler, B., Price, W., & Aguilar, F. Environmental Implications of Increased Reliance of the EU on Biomass from the South East US (European Commission Report ENV.B.1/ETU/2014/0043, 2015).

  • Spelter, H., & Toth, D. North America’s Wood Pellet Sector (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2009).

  • Goerndt, M., Aguilar, F. & Skog, K. Drivers of biomass co-firing in US coal-fired power plants. Biomass Bioenerg. 58, 158–167 (2013).

    Google Scholar 

  • US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program: Timber Products Output Studies (2022). (Online). https://www.fia.fs.fed.us/program-features/tpo/. Accessed 2022.

  • Sonter, L. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8(1013), 66. https://doi.org/10.1038/s41467-017-00557-w (2017).

    CAS 

    Google Scholar 

  • Mirzaee, A., McGarvey, R., Aguilar, F. & Schliep, E. Impact of biopower generation on eastern US forests. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-022-02235-4 (2022).

    Google Scholar 

  • Brandeis, C., Taylor, M., Abt, K., & Alderman, D. Status and Trends for the U.S. Forest Products Sector: A Technical Document Supporting the Forest Service 2020 RPA Assessment (US Department of Agriculture, Forest Service Southern Research Station, Forest Inventory and Analysis, 2021).

  • US Environmental Protection Agency. Emissions & Generation Resource Integrated Database (eGRID) (2021) (Online). https://www.epa.gov/egrid.

  • US Department of Transportation. Ports: ArcGIS Online (2021) (Online). https://data-usdot.opendata.arcgis.com/datasets/usdot::ports/about.

  • US Census Bureau. TIGER/Line Shapefiles (2021) (Online). https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.

  • US Census Bureau. Population and Housing Units Estimates Datasets (2021) (Online). https://www.census.gov/programs-surveys/popest/data/data-sets.html.

  • McCann, P. The Economics of Industrial Location: A Logistics-Costs Approach (Springer, 1998).

  • Singh, D., Cubbage, F., Gonzalez, R. & Abt, R. Locational determinants for wood pellet plants: A review and case study of North and South America. BioResources 11(3), 7928–7952 (2016).

    Google Scholar 

  • Boukherroub, T., LeBel, L. & Lemieux, S. An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales. Appl. Energy 198, 385–400 (2017).

    Google Scholar 

  • Heckman, J., Ichimura, H. & Todd, P. Matching as an econometric evaluation estimator: Evidence from evaluating a JobTraining Programme. Rev. Econ. Stud. 64(4), 605–654 (1997).

    MATH 

    Google Scholar 

  • Caliendo, M. & Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008).

    Google Scholar 

  • Woo, H., Eskelson, B. & Monleon, V. Matching methods to quantify wildfire effects on forest carbon mass in the U.S. Pacific Northwest. Ecol. Appl. 31(3), e02283 (2021).

    PubMed 

    Google Scholar 

  • Morreale, L., Thompson, J., Tang, X., Reinmann, A. & Hutyra, L. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12(7181), 66 (2021).

    Google Scholar 

  • Isard, W. The general theory of location and space-economy. Q. J. Econ. 63(4), 476–506 (1949).

    Google Scholar 

  • Aguilar, F. X. Spatial econometric analysis of location drivers in a renewable resource-based industry: The U.S. South Lumber Industry. For. Policy Econ. 11(3), 184–193 (2009).

    Google Scholar 

  • Aguilar, F. X. Conjoint analysis of industry location preferences: evidence from the softwood lumber industry in the US. Appl. Econ. 66, 3265–3274 (2010).

    Google Scholar 

  • Aguilar, F. X., Goerndt, M., Song, N. & Shifley, S. Internal, external and location factors influencing cofiring of biomass with coal in the US northern region. Energy Econ. 34, 1790–1798 (2012).

    Google Scholar 

  • Ferraro, P. J. et al. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc. Natl. Acad. Sci. 112(24), 7420–7425 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. & Pearse, P. Forest Economics 412 (UBC Press, 2011).

    Google Scholar 

  • Villalobos, L., Coria, J. & Nordén, L. Has forest certification reduced forest degradation in Sweden?. Land Econ. 94, 220–238 (2018).

    Google Scholar 

  • Wooldridge, J. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).

  • Blackman, A., Corral, L., Lima, E. & Asner, G. Titling indigenous communities protects forests in the Peruvian Amazon. PNAS 114(16), 4123–4128 (2016).

    ADS 

    Google Scholar 

  • Abt, K. L., Abt, R. C., Galik, C. S., & Skog, K. E. Effect of Policies on Pellet Production and Forests in the U.S. South: A Technical Document Supporting the Forest Service Update of the 2010 RPA Assessment USDA (Forest Service GTR Srs-202, 2014).

  • Hardie, P. Parks, P. Gottleib and D. Wear, “Responsiveness of rural and urban land uses to land rent determinants in the U.S. South,” Land Economics, vol. 76, no. 4, pp. 659–673, 2000.

  • Parish, E., Herzberger, A., Phifer, C. & Dale, V. Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecol. Soc. 23(1), 28 (2018).

    Google Scholar 

  • Titus, B. et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 11, 66. https://doi.org/10.1186/s13705-021-00281-w (2021).

    Google Scholar 

  • Jandl, R. et al. How strongly can forest management influence soil carbon sequestration?. Geoderma 137(3), 253–268 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Nave, L., Vance, E., Swanston, C. & Cepas, P. S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 259, 857–866 (2010).

    Google Scholar 

  • Mayer, M. et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020).

    Google Scholar 

  • Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., & Domke, G. M. Soil carbon in Forest and Rangeland Soils of the United States Under Changing Conditions 9–31 (Springer, 2020).

  • Nave, L. E. et al. Land use and management effects on soil carbon in US Lake States, with emphasis on forestry, fire, and reforestation. Ecol. Appl. 66, 2356 (2021).

    Google Scholar 

  • Cao, B., Domke, G. M., Russell, M. B. & Walters, B. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coulston, J. & Wear, D. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 66. https://doi.org/10.1038/srep16518 (2015).

    Google Scholar 

  • Röder, M., Whittaker, C. & Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenerg. 79, 50–63 (2015).

    Google Scholar 

  • Hanssen, S., Duden, A., Junginger, M., Dale, D. & D. vander Hilst,. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GC-Bioenergy 9(9), 1406–1422 (2017).

    CAS 

    Google Scholar 

  • Picciano, P., Aguilar, F., Burtraw, D. & Mirzaee, A. Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants. Resour. Energy Econ. 6, 66 (2022).

    Google Scholar 

  • Hetchner, S., Schelhas, J., & Brosius, J. Forests as Fuel: Energy, Landscape, Climate, and Race in the U.S. South (Lexington Books, 2022).

  • Coulston, J., Wear, D. & Vose, J. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Sci. Rep. 5, 8002 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palahí, M. et al. Concerns about reported harvests in European forests. Nature 592, E15–E17 (2021).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions