Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).
Google Scholar
Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).
Google Scholar
Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).
Google Scholar
Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).
Google Scholar
McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).
Google Scholar
MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
Google Scholar
Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).
Google Scholar
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
Google Scholar
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
Google Scholar
Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).
Google Scholar
Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).
Google Scholar
Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).
Google Scholar
Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).
Google Scholar
Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
Google Scholar
Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).
Google Scholar
Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).
Google Scholar
Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).
Google Scholar
Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).
Google Scholar
Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).
Google Scholar
Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).
Google Scholar
Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).
Google Scholar
Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
Google Scholar
Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).
Google Scholar
Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).
Google Scholar
Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).
Google Scholar
Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).
Google Scholar
Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).
Google Scholar
Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).
Google Scholar
Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).
Google Scholar
Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).
Google Scholar
Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).
Google Scholar
Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
Google Scholar
Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).
Google Scholar
Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).
Google Scholar
Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).
Google Scholar
O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).
Google Scholar
Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).
Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).
Google Scholar
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
Google Scholar
Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).
Google Scholar
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
Google Scholar
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
Google Scholar
Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).
Google Scholar
Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).
Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).
Google Scholar
Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).
Google Scholar
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Google Scholar
Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).
Google Scholar
Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).
Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).
Google Scholar
Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).
Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).
Google Scholar
Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.html
Ito, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).
Google Scholar
Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).
Google Scholar
Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).
Google Scholar
Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).
Google Scholar
Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).
Google Scholar
Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).
Google Scholar
Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).
Google Scholar
Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).
McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).
Google Scholar
Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).
Google Scholar
Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).
Google Scholar
Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).
Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).
Google Scholar
Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).
Google Scholar
Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).
Google Scholar
Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).
Google Scholar
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).
Google Scholar
Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).
Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).
Google Scholar
Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).
Google Scholar
Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).
Google Scholar
Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).
Google Scholar
Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).
Google Scholar
Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).
Google Scholar
Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).
Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).
Google Scholar
Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).
Google Scholar
Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).
Google Scholar
Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).
Google Scholar
Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).
Google Scholar
Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).
Google Scholar
Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).
Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).
Google Scholar
Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
Google Scholar
Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
Google Scholar
Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).
Google Scholar
Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).
Google Scholar
Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).
Google Scholar
Source: Ecology - nature.com