in

Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex

[adace-ad id="91168"]
  • Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).

    Article 

    Google Scholar 

  • Félix, M. A. Phenotypic evolution with and beyond genome evolution. Curr. Top. Dev. Biol. 119, 291–347 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harvey, P. & Pagel, M. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).

  • Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).

    ADS 
    Article 

    Google Scholar 

  • Klingenberg, C. P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Russell, E. S. Form and Function: A Contribution to the History of Animal Morphology. (John Murray, 1916).

  • Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).

    Article 

    Google Scholar 

  • Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Erwin, D. H. Disparity: Morphological pattern and developmental context. Palaeontology 50, 57–73 (2007).

    Article 

    Google Scholar 

  • Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Volume 8: Insectivores. vol. 8 (Lynx Edicions, 2018).

  • Jacquet, F. et al. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): From a forest origin to broad ecological expansion across Africa. BMC Evol. Biol. 15, 71. https://doi.org/10.1186/s12862-015-0344-y (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ceríaco, L. M. P. et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from PrÍncipe Island (Gulf of Guinea). Mammalia 79, 325–341 (2015).

    Article 

    Google Scholar 

  • Nicolas, V. et al. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): Influences of the palaeoclimate on its diversification and evolution. J. Biogeogr. 46, 871–883 (2019).

    Article 

    Google Scholar 

  • Konečný, A., Hutterer, R., Meheretu, Y. & Bryja, J. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. J. Vertebr. Biol. 69, 20064.1. https://doi.org/10.25225/jvb.20064 (2020).

    Article 

    Google Scholar 

  • Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Mayr, E. & O’Hara, R. J. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67 (1986).

    PubMed 
    Article 

    Google Scholar 

  • Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article 

    Google Scholar 

  • Smith, T. B., Wayne, R. K., Girman, D. J. & Bruford, M. W. A role for ecotones in generating rainforest biodiversity. Science 276, 1855–1857 (1997).

    CAS 
    Article 

    Google Scholar 

  • Needham, A. E. & Hardy, A. C. The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc. R Soc. Lond. Ser. B Biol. Sci. 137, 115–136 (1950).

    ADS 
    CAS 

    Google Scholar 

  • Hanken, J. & Hall, B. K. The Skull, Volume 3: Functional and Evolutionary Mechanisms. (University of Chicago Press, 1993).

  • Hautier, L., Lebrun, R. & Cox, P. G. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J. Morphol. 273, 1319–1337 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Aristide, L. et al. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution 72, 2697–2711 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Denys, C. et al. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. Zoosystema 43, 729–757 (2021).

    Article 

    Google Scholar 

  • Estevo, C. A., Nagy-Reis, M. B. & Nichols, J. D. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One 12, e0179489. https://doi.org/10.1371/journal.pone.0179489 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spaeth, P. A. Morphological convergence and coexistence in three sympatric North American species of Microtus (Rodentia: Arvicolinae). J. Biogeogr. 36, 350–361 (2009).

    Article 

    Google Scholar 

  • Adams, D. C., Berns, C. M., Kozak, K. H. & Wiens, J. J. Are rates of species diversification correlated with rates of morphological evolution?. Proc. R. Soc. B Biol. Sci. 276, 2729–2738 (2009).

    Article 

    Google Scholar 

  • Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (marmota, Rodentia). Evolution 59, 2460–2472 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 376. https://doi.org/10.1038/s41467-017-02788-3 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirano, T., Kameda, Y., Kimura, K. & Chiba, S. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia. Mol. Phylogenet. Evol. 70, 171–181 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).

    Article 

    Google Scholar 

  • Zou, Z. & Zhang, J. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7, 12758. https://doi.org/10.1038/ncomms12758 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ananjeva, N. B. Current state of the problems in the phylogeny of squamate reptiles (Squamata, Reptilia). Biol. Bull. Rev. 9, 119–128 (2019).

    Article 

    Google Scholar 

  • Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458. https://doi.org/10.1038/ncomms3458 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Esquerré, D., Sherratt, E. & Keogh, J. S. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution 71, 2829–2844 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Marroig, G. & Cheverud, J. M. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution 59, 1128–1142 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Cornette, R., Tresset, A., Houssin, C., Pascal, M. & Herrel, A. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew. Biol. J. Linn. Soc. 114, 795–807 (2015).

    Article 

    Google Scholar 

  • Rodgers, G. M., Downing, B. & Morrell, L. J. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 26, 242–246 (2015).

    Article 

    Google Scholar 

  • Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    ADS 
    Article 

    Google Scholar 

  • Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In Past Climate Variability Through Europe and Africa (eds. Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004). https://doi.org/10.1007/978-1-4020-2121-3_8.

  • Smith, T. B., Schneider, C. J. & Holder, K. Refugial isolation versus ecological gradients. Genetica 112, 383–398 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).

    Google Scholar 

  • Vogel, P. et al. Genetic identity of the critically endangered Wimmer’s shrew Crocidura wimmeri. Biol. J. Linn. Soc. 111, 224–229 (2014).

    Article 

    Google Scholar 

  • Esselstyn, J. A. et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull. Am. Mus. Nat. Hist. 454, 1–108 (2021).

    Article 

    Google Scholar 

  • Evin, A., Bonhomme, V. & Claude, J. Optimizing digitalization effort in morphometrics. Biol. Methods Protoc. 5, bpaa023. https://doi.org/10.1093/biomethods/bpaa023 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: Phylogenetic Tools for Comparative Biology (and Other Things). (2021).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. (2020).

  • Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article 

    Google Scholar 

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. (Springer, 2018).

  • Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. (2021).

  • Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. (2021).

  • Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).

  • Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Article 

    Google Scholar 

  • Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schlager, S., Jefferis, G. & Ian, D. Morpho: Calculations and Visualisations Related to Geometric Morphometrics. (2020).


  • Source: Ecology - nature.com

    Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings

    Global hydro-environmental lake characteristics at high spatial resolution