MacPherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Bio. Ecol. 220, 127–150 (1998).
Google Scholar
Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J. & Moland, E. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85, 628–637 (2016).
Google Scholar
Michelot, C. et al. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet. Deep. Res. Part II Top. Stud. Oceanogr. 141, 224–236 (2017).
Google Scholar
Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Distributional patterns of a marine bird and its prey: Habitat selection based on prey and conspecific behaviour. Mar. Ecol. Prog. Ser. 256, 229–242 (2003).
Google Scholar
Chiarello, A. G. et al. A translocation experiment for the conservation of maned sloths, Bradypus torquatus (Xenarthra, Bradypodidae). Biol. Conserv. 118, 421–430 (2004).
Google Scholar
Fukuda, Y. et al. Environmental resistance and habitat quality influence dispersal of the saltwater crocodile. Mol. Ecol. 31, 1076–1092 (2022).
Google Scholar
O’Leary, S. J., Dunton, K. J., King, T. L., Frisk, M. G. & Chapman, D. D. Genetic diversity and effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning populations estimated from the microsatellite genotypes of marine-captured juveniles. Conserv. Genet. 15, 1173–1181 (2014).
Google Scholar
Brüniche-Olsen, A. et al. Genetic data reveal mixed-stock aggregations of gray whales in the North Pacific Ocean. Biol. Lett. 14, 1–4 (2018).
Google Scholar
Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias Del Sur) feeding ground. J. Hered. 111, 263–276 (2020).
Google Scholar
Bowen, A. B. W. et al. Origin of hawksbill turtles in a Caribbean feeding area as indicated by genetic markers. Ecol. Appl. 6, 566–572 (1996).
Google Scholar
Paxton, K. L., Yau, M., Moore, F. R. & Irwin, D. E. Differential migratory timing of western populations of Wilson’s Warbler (Cardellina pusilla) revealed by mitochondrial DNA and stable isotopes. Auk 130, 689–698 (2013).
Google Scholar
Anderson, E. C., Waples, R. S. & Kalinowski, S. T. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65, 1475–1486 (2008).
Google Scholar
Debevec, E. M. SPAM (version 3.2): Statistics program for analyzing mixtures. J. Hered. 91, 509–511 (2000).
Google Scholar
Bolker, B. M., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Incorporating multiple mixed stocks in mixed stock analysis: ‘Many-to-many’ analyses. Mol. Ecol. 16, 685–695 (2007).
Google Scholar
Neaves, P. I., Wallace, C. G., Candy, J. R. & Beacham, T. D. CBayes: Computer Program for Mixed Stock Analysis of Allelic Data. Free Program Distributed by the Authors Over the Internet. at (2005).
Pella, J. & Masuda, M. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99, 151–167 (2001).
Bolker, B., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Sea turtle stock estimation using genetic markers: Accounting for sampling error of rare genotypes. Ecol. Appl. 13, 763–775 (2003).
Google Scholar
Okuyama, T. & Bolker, B. M. Combining genetic and ecological data to estimate sea turtle origins. Ecol. Appl. 15, 315–325 (2005).
Google Scholar
Nishizawa, H. et al. Composition of green turtle feeding aggregations along the Japanese archipelago: Implications for changes in composition with current flow. Mar. Biol. 160, 2671–2685 (2013).
Google Scholar
Naro-Maciel, E. et al. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: A focus on mtDNA and dispersal modelling. J. R. Soc. Interface 11, 20130888 (2014).
Proietti, M. C. et al. Green turtle Chelonia mydas mixed stocks in the western South Atlantic, as revealed by mtDNA haplotypes and drifter trajectories. Mar. Ecol. Prog. Ser. 447, 195–209 (2012).
Google Scholar
van der Zee, J. P. et al. Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas. Sci. Rep. 9, 1–11 (2019).
Shamblin, B. M. et al. Mexican origins for the Texas green turtle foraging aggregation: A cautionary tale of incomplete baselines and poor marker resolution. J. Exp. Mar. Bio. Ecol. 488, 111–120 (2017).
Google Scholar
Seminoff, J. A. et al. Status Review of the Green Turtle (Chelonia mydas) Under the Endangered Species Act. (NOAA Technical Memorandum, NOAA-NMFS-SWFSC, 2015).
Chaloupka, M. et al. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304 (2008).
Google Scholar
Bjorndal, K. A. & Bolten, A. B. Annual variation in source contributions to a mixed stock: Implications for quantifying connectivity. Mol. Ecol. 17, 2185–2193 (2008).
Google Scholar
Roland, J., Keyghobadi, N. & Fownes, S. Alpine Parnassius butterfly dispersal: Effects of landscape and population size. Ecology 81, 1642–1653 (2000).
Google Scholar
Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116, 1255–1266 (2007).
Google Scholar
Shamblin, B. M. et al. Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol. Ecol. 21, 2330–2340 (2012).
Google Scholar
Witherington, B., Hirama, S. & Hardy, R. Young sea turtles of the pelagic Sargassum-dominated drift community: Habitat use, population density, and threats. Mar. Ecol. Prog. Ser. 463, 1–22 (2012).
Google Scholar
Putman, N. F. & Mansfield, K. L. Direct evidence of swimming demonstrates active dispersal in the sea turtle ‘lost years’. Curr. Biol. 25, 1221–1227 (2015).
Google Scholar
Mansfield, K. L., Wyneken, J. & Luo, J. First Atlantic satellite tracks of ‘lost years’ green turtles support the importance of the Sargasso Sea as a sea turtle nursery. Proc. R. Soc. B Biol. Sci. 288, 20210057 (2021).
Putman, N. F. et al. Predicted distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic Ocean. Ecography (Cop.) 43, 506–517 (2020).
Google Scholar
Putman, N. F. & Naro-Maciel, E. Finding the ‘lost years’ in green turtles: Insights from ocean circulation models and genetic analysis. Proc. R. Soc. B Biol. Sci. 280, 20131468 (2013).
Naro-Maciel, E., Hart, K. M., Cruciata, R. & Putman, N. F. DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate. Ecography (Cop.) 40, 586–597 (2017).
Google Scholar
Ehrhart, L. M., Redfoot, W. E. & Bagley, D. A. Marine turtles of the central region of the Indian River Lagoon system, Florida. Florida Sci. 70, 415–434 (2007).
Redfoot, W. & Ehrhart, L. Trends in size class distribution, recaptures, and abundance of juvenile green turtles (Chelonia mydas) utilizing a rock riprap lined embayment at Port Canaveral, Florida, USA, as developmental habitat. Chelonian Conserv. Biol. 12, 252–261 (2013).
Google Scholar
Ehrhart, L., Redfoot, W., Bagley, D. & Mansfield, K. Long-term trends in loggerhead (Caretta caretta) nesting and reproductive success at an important western Atlantic rookery. Chelonian Conserv. Biol. 13, 173–181 (2014).
Google Scholar
Bolten, A. B. Techniques for measuring sea turtles. in Research and Management Techniques for the Conservation of Sea Turtles. (eds. Eckert, K. L., Bjorndal, K. A., Abreu-Grobois, F. A. & Donnelly, M.). 1–5 (1999).
Bagley, D. A. Characterizing Juvenile Green Turtles, (Chelonia mydas), from Three East Central Florida Developmental Habitats. (University of Central Florida, 2003).
Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).
Google Scholar
Faircloth, B. & Glenn, T. Preparation of an AMPure XP Substitute. AKA Serapure https://doi.org/10.6079/J9MW2F26 (2016).
Google Scholar
Abreu-Grobois, F. A. et al. New mtDNA Dloop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analyses. in Proceedings of the 26th Annual Symposium on Sea Turtle Biology. 179 (International Sea Turtle Society, 2006).
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Google Scholar
Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Google Scholar
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Wright, S. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. (University of Chicago Press, 1978).
Hays, G. C. Ocean currents and marine life. Curr. Biol. 27, R470–R473 (2017).
Google Scholar
Engstrom, T. N., Meylan, P. A. & Meylan, A. B. Origin of juvenile loggerhead turtles (Caretta caretta) in a tropical developmental habitat in Caribbean Panamá. Anim. Conserv. 5, 125–133 (2002).
Google Scholar
Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, F. W. C. F. W. R. I. Index Nesting Beach Survey (INBS). (2021).
Cuevas Flores, E. A., Guzmán Hernández, V., Guerra Santos, J. J. & Rivas Hernández, G. A. El uso del Conocimiento de las Tortugas Marinas Como Herramienta para la Restauración de sus Poblaciones y Hábitats Asociados. (Universidad Autónoma del Carmen, 2019).
Pineda, O. G. & Rocha, A. R. B. Las Tortugas Marinas en México: Logros y Perspectivas para su Conservación. (CONANP, 2016).
Varela, R. G., Quílez, G. Z. & Harrison, E. Report on the 2014 Green Turtle Program at Tortuguero, Costa Rica. (2015).
Azanza Ricardo, J. et al. Nesting ecology of Chelonia mydas (Testudines: Cheloniidae) on the Guanahacabibes Peninsula. Cuba. Rev. Biol. Trop. 61, 1935–1945 (2013).
Google Scholar
Nalovic, M. A. et al. Sea Turtles in the North Atlantic & Wider Caribbean Region. (2020).
Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).
Google Scholar
Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. https://doi.org/10.1016/B978-0-12-405888-0.09999-2 (Academic Press, 2015).
Ruiz-Urquiola, A. et al. Population genetic structure of greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Rev. Investig. Mar. 31, 33–52 (2010).
Long, C. A. et al. Incongruent long-term trends of a marine consumer and primary producers in a habitat affected by nutrient pollution. Ecosphere 12, e03553 (2021).
Google Scholar
Phillips, K. F., Stahelin, G. D., Chabot, R. M. & Mansfield, K. L. Long-term trends in marine turtle size at maturity at an important Atlantic rookery. Ecosphere 12, 7 (2021).
Google Scholar
Bjorndal, K. A., Bolten, A. B. & Chaloupka, M. Y. Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean. Ecol. Appl. 15, 304–314 (2005).
Google Scholar
Naro-Maciel, E. et al. The interplay of homing and dispersal in green turtles: A focus on the southwestern atlantic. J. Hered. 103, 792–805 (2012).
Google Scholar
Monzón-Argüello, C. et al. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J. Biogeogr. 37, 1752–1766 (2010).
Google Scholar
Luke, K., Horrocks, J. A., LeRoux, R. A. & Dutton, P. H. Origins of green turtle (Chelonia mydas) feeding aggregations around Barbados, West Indies. Mar. Biol. 144, 799–805 (2004).
Google Scholar
Bass, A. L., Epperly, S. P. & Braun-McNeill, J. Green turtle (Chelonia mydas) foraging and nesting aggregations in the Caribbean and Atlantic: Impact of currents and behavior on dispersal. J. Hered. 97, 346–354 (2006).
Google Scholar
Lahanas, P. N. et al. Genetic composition of a green turtle (Chelonia mydas) feeding ground population: Evidence for multiple origins. Mar. Biol. 130, 345–352 (1998).
Google Scholar
Foley, A. M. et al. Characteristics of a green turtle (Chelonia mydas) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf Mex. Sci. 25, 131–143 (2007).
Bass, A. L., Lagueux, C. J. & Bowen, B. W. Origin of green turtles, Chelonia mydas, at ‘Sleeping Rocks’ off the Northeast coast of Nicaragua. Copeia 1998, 1064 (1998).
Google Scholar
Bass, A. L. & Witzell, W. N. Demographic composition of immature green turtles (Chelonia mydas) from the East Central Florida Coast: Evidence from mtDNA markers. Herpetologica 56, 357–367 (2000).
Bjorndal, K. A., Parsons, J., Mustin, W. & Bolten, A. B. Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Mar. Biol. 160, 607–616 (2013).
Google Scholar
Perrault, J. R. et al. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida. PLoS ONE 7, e31841 (2012).
Google Scholar
Montero, N. et al. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS ONE 13, 1–16 (2018).
Google Scholar
Shamblin, B. M. et al. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: New insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences. PLoS ONE 9, 85956 (2014).
Google Scholar
Anderson, J. D., Shaver, D. J. & Karel, W. J. Genetic Diversity and Natal Origins of Green Turtles (Chelonia mydas) in the Western Gulf of Mexico. J. Herpetol. 47, 251–257 (2013).
Google Scholar
Source: Ecology - nature.com