in

Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth

  • Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article 

    Google Scholar 

  • van Diepen, C. A., Wolf, J., van Keulen, H. & Rappoldt, C. WOFOST: a simulation model of crop production. Soil Use Manag. 5, 16–24 (1989).

    Article 

    Google Scholar 

  • Cao, J. et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. For. Meteorol. 297, 108275 (2021).

    ADS 
    Article 

    Google Scholar 

  • Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S. & Ozkan, E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12, 3783 (2020).

    ADS 
    Article 

    Google Scholar 

  • Maas, S. J. Parameterised model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 85, 354–358 (1993).

    Article 

    Google Scholar 

  • Nguyen, V., Jeong, S., Ko, J., Ng, C. & Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 11, 2131 (2019).

    Article 

    Google Scholar 

  • Huang, J. et al. Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. For. Meteorol. 276–277, 107609 (2019).

    ADS 
    Article 

    Google Scholar 

  • Jin, X. et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141–152 (2018).

    Article 

    Google Scholar 

  • Shawon, A. R. et al. Assessment of a proximal sensing-integrated crop model for simulation of soybean growth and yield. Remote Sens. 12, 410 (2020).

    ADS 
    Article 

    Google Scholar 

  • Shawon, A. R. et al. Two-dimensional simulation of barley growth and yield using a model integrated with remote-controlled aerial imagery. Remote Sens. 12, 3766 (2020).

    ADS 
    Article 

    Google Scholar 

  • Shin, T. et al. Simulation of wheat productivity using a model integrated with proximal and remotely controlled aerial sensing information. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.649660 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 216, 188–202 (2016).

    ADS 
    Article 

    Google Scholar 

  • Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, N. et al. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl. Sci. 10, 3785 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kumar, P. et al. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 34, 1022–1041 (2019).

    Article 

    Google Scholar 

  • Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 27 (2016).

    Article 

    Google Scholar 

  • Feng, P., Wang, B., Li Liu, D., Waters, C. & Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 275, 100–113 (2019).

    ADS 
    Article 

    Google Scholar 

  • Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cai, Y. et al. Detecting in-season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 5153–5166 (2019).

    ADS 
    Article 

    Google Scholar 

  • van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).

    Article 

    Google Scholar 

  • Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).

    Article 

    Google Scholar 

  • Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Liem, N. V. & Trinh, P. T. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188, 104426 (2020).

    Article 

    Google Scholar 

  • Sahoo, A. K., Pradhan, C. & Das, H. Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In Nature Inspired Computing for Data Science (eds Rout, M. et al.) (Springer International Publishing, 2020).

    Google Scholar 

  • Jeong, S. et al. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 115, 83–91 (2012).

    Article 

    Google Scholar 

  • Peng, D., Huete, A. R., Huang, J., Wang, F. & Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 13, 13–23 (2011).

    ADS 

    Google Scholar 

  • Jeong, S., Ko, J. & Yeom, J.-M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery: a case study in South Korea. Remote Sens. 10, 1665 (2018).

    ADS 
    Article 

    Google Scholar 

  • Xiao, X. et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100, 95–113 (2006).

    ADS 
    Article 

    Google Scholar 

  • Ozdogan, M. & Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 112, 3520–3537 (2008).

    ADS 
    Article 

    Google Scholar 

  • Yeom, J.-M., Jeong, S., Deo, R. C. & Ko, J. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite. GISci. Remote Sens. 58, 1–27 (2021).

    Article 

    Google Scholar 

  • Yeom, J.-M. et al. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 8, 16121 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jeong, S., Ko, J., Choi, J., Xue, W. & Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 39, 2441–2462 (2018).

    Article 

    Google Scholar 

  • Jeong, S. et al. Geographical variations in gross primary production and evapotranspiration of paddy rice in the Korean Peninsula. Sci. Total Environ. 714, 136632 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roger, P., Vermote, E. & Ray, J. MODIS Surface Reflectance User’s Guide. Collection 6 (2015).

  • Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pede, T. & Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 142, 137–150 (2018).

    ADS 
    Article 

    Google Scholar 

  • Kilibarda, M. et al. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119, 2294–2313 (2014).

    ADS 
    Article 

    Google Scholar 

  • Nunez, M. The development of a satellite-based insolation model for the tropical western Pacific Ocean. Int. J. Climatol. 13, 607–627 (1993).

    Article 

    Google Scholar 

  • Otkin, J. A., Anderson, M. C., Mecikalski, J. R. & Diak, G. R. Validation of GOES-based insolation estimates using data from the U.S. Climate reference network. J. Hydrometeorol. 6, 460–475 (2005).

    ADS 
    Article 

    Google Scholar 

  • Pinker, R. & Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 31, 194–211 (1992).

    ADS 
    Article 

    Google Scholar 

  • Kawamura, H., Tanahashi, S. & Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku coast. J. Oceanogr. 54, 457–464 (1998).

    Article 

    Google Scholar 

  • Yeom, J.-M., Seo, Y.-K., Kim, D.-S. & Han, K.-S. Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. J. Sens. 2016, 1–15 (2016).

    Article 

    Google Scholar 

  • Yeom, J.-M., Han, K.-S. & Kim, J.-J. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pac. J. Atmos. Sci. 48, 115–123 (2012).

    ADS 
    Article 

    Google Scholar 

  • Kawai, Y. & Kawamura, H. Validation and improvement of satellite-derived surface solar radiation over the Northwestern Pacific Ocean. J. Oceanogr. 61, 79–89 (2005).

    Article 

    Google Scholar 

  • Tanahashi, S., Kawamura, H., Matsuura, T., Takahashi, T. & Yusa, H. A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ. 75, 412–422 (2001).

    ADS 
    Article 

    Google Scholar 

  • Elbern, H., Schmidt, H., Talagrand, O. & Ebel, A. 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000).

    Article 

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1992).

    MATH 

    Google Scholar 

  • Ko, J. et al. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 9, 096067 (2015).

    Article 

    Google Scholar 

  • Emami Javanmard, M., Ghaderi, S. F. & Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 238, 114153 (2021).

    CAS 
    Article 

    Google Scholar 

  • Diebold, F. X. & Shin, M. Machine learning for regularized survey forecast combination: partially-egalitarian LASSO and its derivatives. Int. J. Forecast. 35, 1679–1691 (2019).

    Article 

    Google Scholar 

  • Khosla, E., Dharavath, R. & Priya, R. Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environ. Dev. Sustain. 22, 5687–5708 (2020).

    Article 

    Google Scholar 

  • Wang, S., Azzari, G. & Lobell, D. B. Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 222, 303–317 (2019).

    ADS 
    Article 

    Google Scholar 

  • Ustuner, M. & Balik, S. F. Polarimetric target decompositions and light gradient boosting machine for crop classification: a comparative evaluation. ISPRS Int. J. Geo Inf. 8, 97 (2019).

    Article 

    Google Scholar 

  • Jeong, S., Ko, J. & Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 802, 149726 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 10, 282–290 (1970).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks