in

Increased drought effects on the phenology of autumn leaf senescence

[adace-ad id="91168"]
  • Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    CAS 
    Article 

    Google Scholar 

  • Piao, S. L. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    CAS 
    Article 

    Google Scholar 

  • Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    CAS 
    Article 

    Google Scholar 

  • Garonna, I. et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Change Biol. 20, 3457–3470 (2014).

    Article 

    Google Scholar 

  • Piao, S. L. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    CAS 
    Article 

    Google Scholar 

  • Zhao, Y. et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl Acad. Sci. USA 113, 1949–1954 (2016).

    CAS 
    Article 

    Google Scholar 

  • Keskitalo, J., Bergquist, G., Gardestrom, P. & Jansson, S. A cellular timetable of autumn senescence. Plant Physiol. 139, 1635–1648 (2005).

    CAS 
    Article 

    Google Scholar 

  • Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).

    Article 

    Google Scholar 

  • Wu, C. Y. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).

    CAS 
    Article 

    Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article 

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS 
    Article 

    Google Scholar 

  • Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    Article 

    Google Scholar 

  • Liu, L. B. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).

    CAS 
    Article 

    Google Scholar 

  • Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).

    Article 

    Google Scholar 

  • Piao, S. L. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).

    CAS 
    Article 

    Google Scholar 

  • Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS 
    Article 

    Google Scholar 

  • Seastedt, T. R. & Knapp, A. K. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).

    CAS 
    Article 

    Google Scholar 

  • Korner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).

    CAS 
    Article 

    Google Scholar 

  • Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    CAS 
    Article 

    Google Scholar 

  • McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought. New Phytol. 178, 719–739 (2008).

    Article 

    Google Scholar 

  • Nolan, R. H. et al. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant Cell Environ. 40, 3122–3134 (2017).

    CAS 
    Article 

    Google Scholar 

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    CAS 
    Article 

    Google Scholar 

  • Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    CAS 
    Article 

    Google Scholar 

  • Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kannenberg, S. A., Driscoll, A. W., Szejner, P., Anderegg, W. R. L. & Ehleringer, J. R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2118052118 (2021).

  • Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. https://doi.org/10.1038/s41467-017-02690-y (2018).

  • Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS 
    Article 

    Google Scholar 

  • Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article 

    Google Scholar 

  • Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Article 

    Google Scholar 

  • Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 189, 71–80 (2014).

    Article 

    Google Scholar 

  • Zhang, X. Y. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 156, 457–472 (2015).

    Article 

    Google Scholar 

  • Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).

    Article 

    Google Scholar 

  • White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).

    Article 

    Google Scholar 

  • Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    Article 

    Google Scholar 

  • Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A. & Wu, C. Y. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. 117, G03032 (2012).

    Google Scholar 

  • Muñoz, S. ERA5-Land Monthly Averaged Data from 1981 to Present (C3S CDS, date accessed:10-8-2021); https://doi.org/10.24381/cds.68d2bb30

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article 

    Google Scholar 

  • Müller, W. A. et al. A Higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 10, 1383–1413 (2018).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS 
    Article 

    Google Scholar 

  • Allen, R. G., Smith, M., Pereira, L. S. & Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 43, 64–92 (1994).

    Google Scholar 

  • Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01112-8 (2021).

  • Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    CAS 
    Article 

    Google Scholar 

  • Peng, J., Wu, C. Y., Zhang, X. Y., Wang, X. Y. & Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Change Biol. 25, 2174–2188 (2019).

    Article 

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Beaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25×0.25 Degree Version 2.0 (GES DISC, 2015); https://doi.org/10.5067/342OHQM9AK6Q

  • Beaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 ×0.25 Degree Version 2.1 (GES DISC, 2016); https://doi.org/10.5067/E7TYRXPJKWOQ

  • Zheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).

    Article 

    Google Scholar 

  • Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. https://doi.org/10.1038/srep15956 (2015).

  • Li, Y. et al. Estimating global ecosystem isohydry/anisohydry using active and passive microwave satellite data. J. Geophys. Res. 122, 3306–3321 (2017).

    Article 

    Google Scholar 

  • Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

  • Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).

    Article 

    Google Scholar 

  • Botta, A., Viovy, N., Ciais, P., Friedlingstein, P. & Monfray, P. A global prognostic scheme of leaf onset using satellite data. Glob. Change Biol. 6, 709–725 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States

    Fission in a colonial marine invertebrate signifies unique life history strategies rather than being a demographic trait