Lenton, T. & Watson, A. J. Revolutions That Made the Earth. (Oxford University Press, 2011).
Lovelock, J. The Ages of Gaia: A Biography of Our Living Earth. (Oxford University Press, USA, 2000).
Falkowski, P. G. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).
Google Scholar
Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B: Biol. Sci. 361, 903–915 (2006).
Google Scholar
Lenton, T. M. Fire feedbacks on atmospheric oxygen. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science (ed. Belcher, C. M.) 289–308 (John Wiley & Sons, 2013).
Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).
Google Scholar
Cope, M. J. & Chaloner, W. G. Fossil charcoal as evidence of past atmospheric composition. Nature 283, 647–649 (1980).
Google Scholar
Watson, A. J. Consequences for the biosphere of forest and grassland fires. (University of Reading, 1978).
Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleo atmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).
Google Scholar
Wildman, R. A., Hickey, L. J., Dickinson, M. B. & Wildman, C. B. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32, 457–460 (2004).
Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).
Google Scholar
Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381–383 (2004).
Google Scholar
Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Google Scholar
Quintiere, J. G. Principles of Fire Behaviour. (CRC Press Boca Raton, 1998).
Pyne, S. J., Andrews, P. L. & Laven, R. D. Introduction to wildland fire. (John Eiley & Sons, Inc., 1996).
Jones, T. P. & Chaloner, W. G. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 39–50 (1991).
Google Scholar
Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
Google Scholar
Belcher, C. M., Collinson, M. E. & Scott, A. C. Fire phenomena and the Earth system: an interdisciplinary guide to fire science. In A 450‐Million‐Year History of Fire 229–249 (Wiley Online Library, 2013).
Berner, R. A. & Landis, G. P. Chemical analysis of gaseous bubble inclusions in amber; the composition of ancient air? Am. J. Sci. 287, 757–762 (1987).
Google Scholar
Lane, N. Oxygen: The Molecule that Made the World. (Oxford University Press, 2002).
Hopfenberg, H. B. et al. Is the air in amber ancient? Science 241, 717–721 (1988).
Google Scholar
Carpenter, F. M. Studies on Carboniferous insects from Commentry, France; Part I. Introduction and families Protagriidae, Meganeuridae, and Campylopteridae. Bull. Geol. Soc. Am. 54, 527–554 (1943).
Google Scholar
Carpenter, F. M. Studies on Carboniferous insects from Commentry, France: Part II. The Megasecoptera. J. Paleontol. 25, 336–355 (1951).
Whyte, M. A. A gigantic fossil arthropod trackway. Nature 438, 576–576 (2005).
Google Scholar
Carroll, R. L. Vertebrate Paleontology and Evolution. (Freeman, 1988).
Graham, J. B., Aguilar, N. M., Dudley, R. & Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995).
Google Scholar
Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B: Biol. Sci. 277, 1937–1946 (2010).
Google Scholar
Hetz, S. K. & Bradley, T. J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005).
Google Scholar
Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).
Google Scholar
Watson, A. J. & Lovelock, J. E. The dependence of flame spread and probability of ignition on atmospheric oxygen: an experimental investigation. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science 273–287 (John Wiley & Sons, 2013).
Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 10, 661–677 (2001).
Google Scholar
Benson, R. P., Roads, J. O. & Weise, D. R. Climatic and weather factors affecting fire occurrence and behavior. Dev. Environ. Sci. 8, 37–59 (2008).
Babrauskas, V. Effective heat of combustion for flaming combustion of conifers. Can. J. For. Res. 36, 659–663 (2006).
Google Scholar
Madrigal, J., Guijarro, M., Hernando, C., Diez, C. & Marino, E. Effective heat of combustion for flaming combustion of Mediterranean forest fuels. Fire Technol. 47, 461–474 (2011).
Google Scholar
Rivera, J., de, D., Davies, G. M. & Jahn, W. Flammability and the heat of combustion of natural fuels: a review. Combust. Sci. Technol. 184, 224–242 (2012).
Google Scholar
Dibble, A. C., White, R. H. & Lebow, P. K. Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants. Int. J. Wildland Fire 16, 426–443 (2007).
Google Scholar
Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431.e2 (2020).
Google Scholar
Lenton, T. M. & Watson, A. J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).
Google Scholar
Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2. (Oxford University Press on Demand, 2004).
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et. Cosmochimica Acta 70, 5653–5664 (2006).
Google Scholar
Berner, R. A. GEOCARB II: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 294, 56–91 (1994).
Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
Google Scholar
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178, 1–28 (2018).
Google Scholar
Mills, B. J., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).
Google Scholar
Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).
Google Scholar
Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. vol. 2 (Princeton University Press, 2020).
Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochimica et. Cosmochimica Acta 66, 361–381 (2002).
Google Scholar
Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
Google Scholar
Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).
Google Scholar
Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).
Google Scholar
Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).
Google Scholar
Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob. Change Biol. 7, 613–629 (2001).
Google Scholar
Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).
Google Scholar
Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).
Google Scholar
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
Google Scholar
Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).
Google Scholar
Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol.t 165, 525–538 (2005).
Google Scholar
Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
Google Scholar
Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U. & Cramer, W. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag. 1, 1–7 (2006).
Google Scholar
Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).
Google Scholar
Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).
Google Scholar
Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).
Google Scholar
Lovelock, J. E. Gaia: A New Look at Life on Earth. (Oxford Paperbacks, 2000).
Lasslop, G. et al. Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction. Glob. Change Biol. 26, 5027–5041 (2020).
Google Scholar
Quan, X. et al. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinf. 101, 102354 (2021).
Collinson, M. E. et al. Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene‐Eocene Thermal Maximum at Cobham, Southern England. Grana 48, 38–66 (2009).
Google Scholar
Feurdean, A. & Vasiliev, I. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Sci. Rep. 9, 1–7 (2019).
Google Scholar
Hollaar, T. P. et al. Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic. Commun. Earth Environ. 2, 1–12 (2021).
Google Scholar
Zelitch, I. Photosynthesis, Photorespiration, and Plant Productivity. (Elsevier, 2012).
Björkman, O. The effect of oxygen concentration on photosynthesis in higher plants. Physiol. Plant. 19, 618–633 (1966).
Google Scholar
Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).
Google Scholar
Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 1–7 (2017).
Google Scholar
Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).
Google Scholar
Cohen, J. D. The national fire-danger rating system: basic equations. vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and …, 1985).
Source: Ecology - nature.com