in

Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence of forests

[adace-ad id="91168"]
  • Lenton, T. & Watson, A. J. Revolutions That Made the Earth. (Oxford University Press, 2011).

  • Lovelock, J. The Ages of Gaia: A Biography of Our Living Earth. (Oxford University Press, USA, 2000).

  • Falkowski, P. G. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B: Biol. Sci. 361, 903–915 (2006).

    Article 

    Google Scholar 

  • Lenton, T. M. Fire feedbacks on atmospheric oxygen. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science (ed. Belcher, C. M.) 289–308 (John Wiley & Sons, 2013).

  • Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cope, M. J. & Chaloner, W. G. Fossil charcoal as evidence of past atmospheric composition. Nature 283, 647–649 (1980).

    Article 

    Google Scholar 

  • Watson, A. J. Consequences for the biosphere of forest and grassland fires. (University of Reading, 1978).

  • Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleo atmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wildman, R. A., Hickey, L. J., Dickinson, M. B. & Wildman, C. B. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32, 457–460 (2004).

  • Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381–383 (2004).

    Article 

    Google Scholar 

  • Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Quintiere, J. G. Principles of Fire Behaviour. (CRC Press Boca Raton, 1998).

  • Pyne, S. J., Andrews, P. L. & Laven, R. D. Introduction to wildland fire. (John Eiley & Sons, Inc., 1996).

  • Jones, T. P. & Chaloner, W. G. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 39–50 (1991).

    Article 

    Google Scholar 

  • Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    Article 

    Google Scholar 

  • Belcher, C. M., Collinson, M. E. & Scott, A. C. Fire phenomena and the Earth system: an interdisciplinary guide to fire science. In A 450‐Million‐Year History of Fire 229–249 (Wiley Online Library, 2013).

  • Berner, R. A. & Landis, G. P. Chemical analysis of gaseous bubble inclusions in amber; the composition of ancient air? Am. J. Sci. 287, 757–762 (1987).

    Article 

    Google Scholar 

  • Lane, N. Oxygen: The Molecule that Made the World. (Oxford University Press, 2002).

  • Hopfenberg, H. B. et al. Is the air in amber ancient? Science 241, 717–721 (1988).

    Article 
    PubMed 

    Google Scholar 

  • Carpenter, F. M. Studies on Carboniferous insects from Commentry, France; Part I. Introduction and families Protagriidae, Meganeuridae, and Campylopteridae. Bull. Geol. Soc. Am. 54, 527–554 (1943).

    Article 

    Google Scholar 

  • Carpenter, F. M. Studies on Carboniferous insects from Commentry, France: Part II. The Megasecoptera. J. Paleontol. 25, 336–355 (1951).

    Google Scholar 

  • Whyte, M. A. A gigantic fossil arthropod trackway. Nature 438, 576–576 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Carroll, R. L. Vertebrate Paleontology and Evolution. (Freeman, 1988).

  • Graham, J. B., Aguilar, N. M., Dudley, R. & Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995).

    Article 

    Google Scholar 

  • Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B: Biol. Sci. 277, 1937–1946 (2010).

    Article 

    Google Scholar 

  • Hetz, S. K. & Bradley, T. J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).

    Article 
    PubMed 

    Google Scholar 

  • Watson, A. J. & Lovelock, J. E. The dependence of flame spread and probability of ignition on atmospheric oxygen: an experimental investigation. In Fire phenomena and the Earth system: an interdisciplinary guide to fire science 273–287 (John Wiley & Sons, 2013).

  • Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 10, 661–677 (2001).

    Article 

    Google Scholar 

  • Benson, R. P., Roads, J. O. & Weise, D. R. Climatic and weather factors affecting fire occurrence and behavior. Dev. Environ. Sci. 8, 37–59 (2008).

    Google Scholar 

  • Babrauskas, V. Effective heat of combustion for flaming combustion of conifers. Can. J. For. Res. 36, 659–663 (2006).

    Article 

    Google Scholar 

  • Madrigal, J., Guijarro, M., Hernando, C., Diez, C. & Marino, E. Effective heat of combustion for flaming combustion of Mediterranean forest fuels. Fire Technol. 47, 461–474 (2011).

    Article 

    Google Scholar 

  • Rivera, J., de, D., Davies, G. M. & Jahn, W. Flammability and the heat of combustion of natural fuels: a review. Combust. Sci. Technol. 184, 224–242 (2012).

    Article 

    Google Scholar 

  • Dibble, A. C., White, R. H. & Lebow, P. K. Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants. Int. J. Wildland Fire 16, 426–443 (2007).

    Article 

    Google Scholar 

  • Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431.e2 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lenton, T. M. & Watson, A. J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).

    Article 

    Google Scholar 

  • Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2. (Oxford University Press on Demand, 2004).

  • Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et. Cosmochimica Acta 70, 5653–5664 (2006).

    Article 

    Google Scholar 

  • Berner, R. A. GEOCARB II: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

  • Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article 

    Google Scholar 

  • Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178, 1–28 (2018).

    Article 

    Google Scholar 

  • Mills, B. J., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).

    Article 

    Google Scholar 

  • Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).

    Article 

    Google Scholar 

  • Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. vol. 2 (Princeton University Press, 2020).

  • Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochimica et. Cosmochimica Acta 66, 361–381 (2002).

    Article 

    Google Scholar 

  • Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Belcher, C. M. et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nat. Commun. 12, 503 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. 107, 22448–22453 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob. Change Biol. 7, 613–629 (2001).

    Article 

    Google Scholar 

  • Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    Article 

    Google Scholar 

  • Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).

    Article 

    Google Scholar 

  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).

    Article 

    Google Scholar 

  • Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol.t 165, 525–538 (2005).

    Article 

    Google Scholar 

  • Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).

    Article 

    Google Scholar 

  • Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U. & Cramer, W. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag. 1, 1–7 (2006).

    Article 

    Google Scholar 

  • Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).

    Article 

    Google Scholar 

  • Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011 (2010).

    Article 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article 

    Google Scholar 

  • Lovelock, J. E. Gaia: A New Look at Life on Earth. (Oxford Paperbacks, 2000).

  • Lasslop, G. et al. Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction. Glob. Change Biol. 26, 5027–5041 (2020).

    Article 

    Google Scholar 

  • Quan, X. et al. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinf. 101, 102354 (2021).

    Google Scholar 

  • Collinson, M. E. et al. Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene‐Eocene Thermal Maximum at Cobham, Southern England. Grana 48, 38–66 (2009).

    Article 

    Google Scholar 

  • Feurdean, A. & Vasiliev, I. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Sci. Rep. 9, 1–7 (2019).

    Article 

    Google Scholar 

  • Hollaar, T. P. et al. Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic. Commun. Earth Environ. 2, 1–12 (2021).

    Article 

    Google Scholar 

  • Zelitch, I. Photosynthesis, Photorespiration, and Plant Productivity. (Elsevier, 2012).

  • Björkman, O. The effect of oxygen concentration on photosynthesis in higher plants. Physiol. Plant. 19, 618–633 (1966).

    Article 

    Google Scholar 

  • Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article 

    Google Scholar 

  • Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 1–7 (2017).

    Article 

    Google Scholar 

  • Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article 

    Google Scholar 

  • Cohen, J. D. The national fire-danger rating system: basic equations. vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and …, 1985).


  • Source: Ecology - nature.com

    Extensive archaeobotanical data estimate carrying capacity, duration, and land use of the Late Bronze Age settlement site Březnice (Czech Republic)

    Semi-field and surveillance data define the natural diapause timeline for Culex pipiens across the United States