in

Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia

  • Sylvan, J. How to protect a coral reef: the public trust doctrine and the law of the sea recommended citation. Sustain. Dev. Law Policy 7, 12 (2006).

    Google Scholar 

  • LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4, e00052–13 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reef. 25, 75–87 (1990).

    Google Scholar 

  • Dubinsky, Z. & Stambler, N. Coral reefs: an ecosystem in transition. (Springer, 2011).

  • Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. https://doi.org/10.1038/NCLIMATE1661 (2012).

  • Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evolution 32, 735–745 (2017).

    Article 

    Google Scholar 

  • Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lehnert, E. M. et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda) 4, 277–95 (2014).

    CAS 
    Article 

    Google Scholar 

  • Dubinsky, Z. & Berman-Frank, I. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. in. Aquat. Sci. 63, 4–17 (2001).

    CAS 
    Article 

    Google Scholar 

  • Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–61 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15, e1008189 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2022653118 (2021).

  • Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wooldridge, S. A. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences Discuss. 9, 8111–8139 (2012).

    Google Scholar 

  • Cziesielski, M. J., Schmidt‐Roach, S. & Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. https://doi.org/10.1002/ece3.5576 (2019).

  • Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc. Biol. Sci./R. Soc. 273, 2305–12 (2006).

    Google Scholar 

  • Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. 105, 10444–10449 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change https://doi.org/10.1038/nclimate1330 (2011).

  • Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. Biol. Sci. 285, 20172654 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).

    Article 

    Google Scholar 

  • Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to environmental stress,making its relative ability to acclimate or adapt extremely important to the to future climate change. Science 344, 895–898 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herrera, M. et al. Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME J. 15, 141–153 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 1–19 https://doi.org/10.1007/s00338-020-01917-7 (2020).

  • Perez, S. F., Cook, C. B. & Brooks, W. R. The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 256, 1–14 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mieog, J. C. et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4, e6364 (2009).

  • Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405–414 (2009).

    Article 

    Google Scholar 

  • Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).

    Article 

    Google Scholar 

  • LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).

    Article 

    Google Scholar 

  • Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. 112, 201513318 (2015).

    Google Scholar 

  • Matthews, J. L. et al. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J. Exp. Biol. jeb.128934 https://doi.org/10.1242/JEB.128934 (2015).

  • Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • DeSalvo, M., Sunagawa, S., Voolstra, C. R. & Medina, M. Transcriptomic resonses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar. Ecol. Prog. Ser. 402, 97–113 (2010).

    CAS 
    Article 

    Google Scholar 

  • Maor-Landaw, K. & Levy, O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4, e1814 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Meyer, E. & Weis, V. M. Study of cnidarian-algal symbiosis in the “omics” age. Biol. Bull. 223, 44–65 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oakley, C. A. et al. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. J. Proteome Res. 16, 2121–2134 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robbart, M. L., Peckol, P., Scordilis, S. P., Curran, H. A. & Brown-Saracino, J. Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A-tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283, 151–160 (2004).

    Article 

    Google Scholar 

  • Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Traylor-Knowles, N., Rose, N. H. & Palumbi, S. R. The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol. 220, 1837–1845 (2017).

    PubMed 

    Google Scholar 

  • Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: The diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 62 (2016).

  • Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).

    Article 

    Google Scholar 

  • Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).

    Article 

    Google Scholar 

  • Rehman, A. U. et al. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. N. Phytologist 212, 472–484 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lesser, K. B. & Garcia, F. A. Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern. Fetal Med. 6, 303–307 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dunn, S. R., Schnitzler, C. E. & Weis, V. M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B: Biol. Sci. 274, 3079–3085 (2007).

    Google Scholar 

  • DeSalvo, M. K. et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol. Ecol. 19, 1174–1186 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01220 (2017).

  • Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 16802 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sproles, A. E. et al. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ. Microbiol. 22, 3741–3753 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rädecker, N. et al. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses. Front. Physiol. 9, 214 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. BioScience 43, 606–611 (1993).

    Article 

    Google Scholar 

  • Wang & Douglas. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J. Exp. Biol. 201, 2445–53 (1998).

  • Loram, J. E., Trapido-Rosenthal, H. G. & Douglas, A. E. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol. Ecol. 16, 4849–4857 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karako-Lampert, S. et al. Transcriptome analysis of the scleractinian coral Stylophora pistillata. PLoS One 9, e88615 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hillyer, K. E., Tumanov, S., Villas-Bôas, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 219, 516–27 (2016).

    PubMed 

    Google Scholar 

  • Bertucci, A., Forêt, S., Ball, E. E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl Acad. Sci. 114, 13194–13199 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lin, M.-F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol. Open 8, bio038281 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Medrano, E., Merselis, D. G., Bellantuono, A. J. & Rodriguez-Lanetty, M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian– Symbiodiniaceae Mutualism. Front. Microbiol. 10, 1153 (2019).

  • Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci. Rep. 5, 17639 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J. Phycol. 49, 447–458 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy