in

Increasing salinity stress decreases the thermal tolerance of amphibian tadpoles in coastal areas of Taiwan

  • Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meehl, G. A. et al. How much more global warming and sea level rise?. Science 307, 1769–1772 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stocker, T. F. et al. (Cambridge University Press, 2013).

  • Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).

    ADS 
    Article 

    Google Scholar 

  • Church, J. A. & White, N. J. A 20th century acceleration in global sea‐level rise. Geophys. Res. Lett. 33 (2006).

  • Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    ADS 
    Article 

    Google Scholar 

  • Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106, 21527–21532 (2009).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Horton, B. P., Rahmstorf, S., Engelhart, S. E. & Kemp, A. C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quatern. Sci. Rev. 84, 1–6 (2014).

    ADS 
    Article 

    Google Scholar 

  • Day, J. W., Pont, D., Hensel, P. F. & Ibañez, C. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: The importance of pulsing events to sustainability. Estuaries 18, 636–647 (1995).

    CAS 
    Article 

    Google Scholar 

  • Feagin, R. A., Sherman, D. J. & Grant, W. E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 3, 359–364 (2005).

    Article 

    Google Scholar 

  • Nicholls, R. J. Planning for the impacts of sea level rise. Oceanography 24, 144–157 (2011).

    Article 

    Google Scholar 

  • Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. 111, 3292–3297 (2014).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Duarte, H. et al. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Change Biol. 18, 412–421 (2012).

    ADS 
    Article 

    Google Scholar 

  • Licht, P. & Brown, A. G. Behavioral thermoregulation and its role in the ecolgy of the red-bellied newt, Taricha rivularis. Ecology 48, 598–611 (1967).

    Article 

    Google Scholar 

  • Feder, M. E. & Pough, F. H. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comp. Biochem. Physiol. Part A Physiol. 50, 91–98 (1975).

    CAS 
    Article 

    Google Scholar 

  • Keen, W. H. & Schroeder, E. E. Temperature selection and tolerance in three species of Ambystoma larvae. Copeia 1975, 523–530 (1975).

    Article 

    Google Scholar 

  • Hoppe, D. M. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica. 318–321 (1978).

  • Cupp Jr, P. V. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica. 234–244 (1980).

  • Howard, J. H., Wallace, R. L. & Stauffer, J. R. Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400–402 (1983).

    Article 

    Google Scholar 

  • Floyd, R. B. Ontogenetic change in the temperature tolerance of larval Bufo marinus (Anura: Bufonidae). Comp. Biochem. Physiol. A Physiol. 75, 267–271 (1983).

    Article 

    Google Scholar 

  • Floyd, R. B. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 1985, 625–631 (1985).

    MathSciNet 
    Article 

    Google Scholar 

  • Manis, M. L. & Claussen, D. L. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol 11, 31–36 (1986).

    Article 

    Google Scholar 

  • Layne, J., Claussen, D. & Manis, M. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. J. Therm. Biol 12, 183–187 (1987).

    Article 

    Google Scholar 

  • Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).

    Article 

    Google Scholar 

  • Simon, M. N., Ribeiro, P. L. & Navas, C. A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol 48, 36–44 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Boutilier, R., Donohoe, P., Tattersall, G. & West, T. Hypometabolic homeostasis in overwintering aquatic amphibians. J. Exp. Biol. 200, 387–400 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shoemaker, V. & Nagy, K. A. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39, 449–471 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Viertel, B. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptilia 20, 161–171 (1999).

    Article 

    Google Scholar 

  • Wu, C.-S. & Kam, Y.-C. Thermal tolerance and thermoregulation by Taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35–46 (2005).

    Article 

    Google Scholar 

  • Gomez-Mestre, I. & Tejedo, M. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57, 1889–1899 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Christy, M. T. & Dickman, C. R. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea). Amphibia-Reptilia 23, 1–11 (2002).

    Article 

    Google Scholar 

  • Wu, C.-S. & Kam, Y.-C. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool. Sci. 26, 476–482 (2009).

    Article 

    Google Scholar 

  • Wu, C. S., Yang, W. K., Lee, T. H., Gomez-Mestre, I. & Kam, Y. C. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na+, K+-ATPase expression. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 57–64 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Alexander, L. G., Lailvaux, S. P., Pechmann, J. H. & DeVries, P. J. Effects of salinity on early life stages of the Gulf Coast toad, Incilius nebulifer (Anura: Bufonidae). Copeia 2012, 106–114 (2012).

    Article 

    Google Scholar 

  • Bernabò, I., Bonacci, A., Coscarelli, F., Tripepi, M. & Brunelli, E. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquat. Toxicol. 132, 119–133 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kearney, B. D., Pell, R. J., Byrne, P. G. & Reina, R. D. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude. J. Exp. Zool. A Ecol. Genet. Physiol. 321, 541–549 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hsu, W. T., Wu, C. S., Hatch, K., Chang, Y. M. & Kam, Y. C. Full compensation of growth in salt-tolerant tadpoles after release from salinity stress. J. Zool. 304, 141–149 (2018).

    Article 

    Google Scholar 

  • Hsu, W.-T. et al. Salinity acclimation affects survival and metamorphosis of crab-eating frog tadpoles. Herpetologica 68, 14–21 (2012).

    Article 

    Google Scholar 

  • Lai, J.-C., Kam, Y.-C., Lin, H.-C. & Wu, C.-S. Enhanced salt tolerance of euryhaline tadpoles depends on increased Na+, K+-ATPase expression after salinity acclimation. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 227, 84–91 (2019).

    CAS 
    Article 

    Google Scholar 

  • Brown, M. E. & Walls, S. C. Variation in salinity tolerance among larval anurans: Implications for community composition and the spread of an invasive, non-native species. Copeia 2013, 543–551 (2013).

    Article 

    Google Scholar 

  • Balinsky, J. B. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J. Exp. Zool. A Ecol. Genet. Physiol. 215, 335–350 (1981).

    CAS 

    Google Scholar 

  • Duellman, W. & Trueb, L. Biology of Amphibians (John Hopkins University Press, 1994).

    Google Scholar 

  • Alcala, A. C. Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 1962, 679–726 (1962).

    Article 

    Google Scholar 

  • Gordon, M. S. & Tucker, V. A. Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). J. Exp. Biol. 42, 437–445 (1965).

    CAS 
    Article 

    Google Scholar 

  • Dunson, W. A. Tolerance to high temperature and salinity by tadpoles of the Philippine frog, Rana cancrivora. Copeia 1977, 375–378 (1977).

    Article 

    Google Scholar 

  • Uchiyama, M., Murakami, T., Wakasugi, C. & Yoshizawa, H. Structure of the kidney in the crab-eating frog, Rana cancrivora. J. Morphol. 204, 147–156 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Heo, K., Kim, Y. I., Bae, Y., Jang, Y. & Borzée, A. First report of Dryophytes japonicus tadpoles in saline environment. Russ. J. Herpetol. 26, 87–90 (2019).

    Article 

    Google Scholar 

  • Jian, C. Y., Cheng, S. Y. & Chen, J. C. Temperature and salinity tolerances of yellowfin sea bream, Acanthopagrus latus, at different salinity and temperature levels. Aquac. Res. 34, 175–185 (2003).

    Article 

    Google Scholar 

  • Sardella, B. A., Sanmarti, E. & Kültz, D. The acute temperature tolerance of green sturgeon (Acipenser medirostris) and the effect of environmental salinity. J. Exp. Zool. A Ecol. Genet. Physiol. 309, 477–483 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Everatt, M. J., Worland, M. R., Convey, P., Bale, J. S. & Hayward, S. A. The impact of salinity exposure on survival and temperature tolerance of the Antarctic collembolan Cryptopygus antarcticus. Physiol. Entomol. 38, 202–210 (2013).

    Article 

    Google Scholar 

  • Kerby, J. L., Richards-Hrdlicka, K. L., Storfer, A. & Skelly, D. K. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecol. Lett. 13, 60–67 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Chang, Y. M., Wu, C. S., Huang, Y. S., Sung, S. M. & Hwang, W. Occurrence and reproduction of anurans in brackish water in a coastal forest in Taiwan. Herpetol. Notes 9, 291–295 (2016).

    Google Scholar 

  • Peng, T. R., Hsieh, Y. H. & Liu, T. S. Hydro chemical characteristics and salinization of groundwater in Yunlin area. J. Chin. Soil Water Conserv. 32, 173–189 (2005).

    Google Scholar 

  • Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Groff, L. A., Marks, S. B. & Hayes, M. P. Using ecological niche models to direct rare amphibian surveys: A case study using the Oregon Spotted Frog (Rana pretiosa). Herpetol. Conserv. Biol. 9, 354–368 (2014).

    Google Scholar 

  • Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers. Conserv. 21, 1251–1266 (2012).

    Article 

    Google Scholar 

  • Pineda, E. & Lobo, J. M. Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J. Anim. Ecol. 78, 182–190 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, H.-S., Wei, Y.-L. & Wang, X.-G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 17, 140–145 (2015).

    Article 

    Google Scholar 

  • Chinathamby, K., Reina, R. D., Bailey, P. C. & Lees, B. K. Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Aust. J. Zool. 54, 97–105 (2006).

    Article 

    Google Scholar 

  • Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. 16, 254–260 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Metzger, D. C., Healy, T. M. & Schulte, P. M. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus). J. Comp. Physiol. B. 186, 879–889 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sanabria, E. et al. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean Toads (Rhinella spinulosa) from Monte Desert, Argentina. J. Therm. Biol. 74, 195–200 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kikawada, T. et al. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem. Biophys. Res. Commun. 348, 56–61 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sanzo, D. & Hecnar, S. J. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ. Pollut. 140, 247–256 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wood, L. & Welch, A. M. Assessment of interactive effects of elevated salinity and three pesticides on life history and behavior of southern toad (Anaxyrus terrestris) tadpoles. Environ. Toxicol. Chem. 34, 667–676 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gomez-Mestre, I., Tejedo, M., Ramayo, E. & Estepa, J. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiol. Biochem. Zool. 77, 267–274 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dent, J. N. Hormonal interaction in amphibian metamorphosis 1 2. Am. Zool. 28, 297–308 (1988).

    CAS 
    Article 

    Google Scholar 

  • Bodensteiner, B. L. et al. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians?. J. Exp. Zool. Part A Ecol. Integr. Physiol. 335, 173–194 (2021).

    Article 

    Google Scholar 

  • Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).

    Article 

    Google Scholar 

  • Mitchell, J. D., Hewitt, P. & Van Der Linde, T. D. K. Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen). J. Insect Physiol. 39, 523–528 (1993).

    Article 

    Google Scholar 

  • Plummer, M. V., Williams, B. K., Skiver, M. M. & Carlyle, J. C. Effects of dehydration on the critical thermal maximum of the desert box turtle (Terrapene ornata luteola). J. Herpetol. 37, 747–751 (2003).

    Article 

    Google Scholar 

  • Lee, S. et al. Effects of feed restriction on the upper temperature tolerance and heat shock response in juvenile green and white sturgeon. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 198, 87–95 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Blaustein, A. R. & Wake, D. B. Declining amphibian populations: A global phenomenon?. Trends Ecol. Evol. 5, 203–204 (1990).

    Article 

    Google Scholar 

  • Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl. Acad. Sci. 107, 8269–8274 (2010).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Skelly, D. & Freidenburg, L. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).

    Article 

    Google Scholar 

  • Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 1–14 (2019).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks