Pascolini-Campbell, M., Reager, J. T., Chandanpurkar, H. A. & Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593, 543–547 (2021).
Google Scholar
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Google Scholar
Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. 117, 9216–9222 (2020).
Google Scholar
Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 2016GL071921 (2017).
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Google Scholar
Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).
Google Scholar
Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).
Google Scholar
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).
Google Scholar
Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).
Google Scholar
Humphrey, V. et al. Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).
Google Scholar
Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).
Google Scholar
Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).
Google Scholar
Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).
Google Scholar
Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob. Change Biol. 18, 2246–2255 (2012).
Google Scholar
Zuidema, P. A. et al. Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Glob. Change Biol. 26, 4028–4041 (2020).
Google Scholar
Bansal, S., James, J. J. & Sheley, R. L. The effects of precipitation and soil type on three invasive annual grasses in the western United States. J. Arid Environ. 104, 38–42 (2014).
Google Scholar
Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).
Google Scholar
O’Connor, J. C. et al. Forests buffer against variations in precipitation. Glob. Change Biol., 27, 4686–4696 (2021).
Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).
Google Scholar
Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).
Google Scholar
Adams, M. A., Buckley, T. N., Binkley, D., Neumann, M. & Turnbull, T. L. CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat. Commun. 12, 5194 (2021).
Google Scholar
Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021).
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
Google Scholar
Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).
Google Scholar
Zhang, W., Brandt, M., Guichard, F., Tian, Q. & Fensholt, R. Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the sahelian rainfall regime. J. Hydrol. 550, 427–440 (2017).
Google Scholar
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Google Scholar
Huntzinger, D. N. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – part 1: overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013).
Google Scholar
Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Naturalist 164, 625–632 (2004).
Google Scholar
Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883 (2017).
Google Scholar
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO 2 reveals distinct response patterns between disturbed and undisturbed vegetation: vegetation responses to elevated CO2. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).
Google Scholar
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).
Google Scholar
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO 2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Google Scholar
Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. 113, E7222–E7230 (2016).
Google Scholar
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
Google Scholar
Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).
Google Scholar
Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
Google Scholar
González de Andrés, E. et al. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 106, 59–75 (2018).
Google Scholar
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).
Google Scholar
Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).
Google Scholar
Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).
Google Scholar
Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. 113, 12757–12762 (2016).
Google Scholar
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions: Photosynthesis and stomatal conductance responses to rising [CO2]. Plant, Cell Environ. 30, 258–270 (2007).
Google Scholar
Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).
Google Scholar
Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytologist 221, 693–705 (2019).
Google Scholar
Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).
Google Scholar
Thompson, S. E., Harman, C. J., Heine, P. & Katul, G. G. Vegetation-infiltration relationships across climatic and soil type gradients: vegetation-infiltration relationships. J. Geophys. Res. 115, G02023 (2010).
Google Scholar
Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
Google Scholar
Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytologist 201, 1086–1095 (2014).
Google Scholar
Cui, J. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).
Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).
Google Scholar
Cui, J. et al. Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land Areas. Geophys. Res. Lett. 48, e2021GL094293 (2021).
Yang, Y. et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: Accounting for aboveground and belowground vegetation-CO2 effects. Hydrol. Earth Syst. Sci. 25, 3411–3427 (2021).
Google Scholar
Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2022).
Google Scholar
Sang, Y. et al. Comment on “Recent global decline of CO 2 fertilization effects on vegetation photosynthesis”. Science 373, eabg4420 (2021).
Google Scholar
Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
Google Scholar
Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).
Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
Google Scholar
Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).
Google Scholar
Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).
Google Scholar
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Google Scholar
Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl Climatol. 115, 15–40 (2014).
Google Scholar
Prado, R. & West, M. Time series: modeling, computation, and inference (CRC Press, 2010).
West, M. & Harrison, J. Bayesian forecasting and dynamic models (Springer, 1997).
Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Chang. 9, 880–885 (2019).
Google Scholar
Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).
Google Scholar
Source: Ecology - nature.com