in

Independent origin of large labyrinth size in turtles

  • Steinhausen, W. Über die Beobachtungen der Cupula in den Bogengangsampullen des Labyrinthes des Lebendes Hechts. Pflug. Arch. 232, 500–512 (1933).

    Article 

    Google Scholar 

  • Wever, E. G. The reptile ear. (Princeton University Press, 1978).

  • Wilson, V. J. & Melvill Jones, G. Mammalian vestibular physiology. (Plenum Press, 1979).

  • Spoor, F. & Zonneveld, F. Comparative review of the human bony labyrinth. Yearb. Phys. Anthropol. 41, 211–251 (1998).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-8644(1998)107:27+3.0.CO;2-V” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-8644%281998%29107%3A27%2B%3C211%3A%3AAID-AJPA8%3E3.0.CO%3B2-V” aria-label=”Article reference 4″>Article 

    Google Scholar 

  • Rabbitt, R. D., Damiano, E. R. & Grant, J. W. Biomechanics of the semicircular canals and otolith organs. In: Highstein, F. M., Ray, R. R., Popper, A. N. (eds) Springer Handbook Of Auditory Research, vol. 19, The Vestibular System, pp. 153–201 (Springer, New York, 2004).

  • Georgi, J. A. & Sipla, J. S. Comparative and functional anatomy of balance in aquatic reptiles and birds. In: Thewissen, J. G. M., Nummela, S. (eds) Sensory Evolution On The Threshold, Adaptations In Secondarily Aquatic Vertebrates.pp. 233–256 (University of California Press, 2008).

  • David, R. et al. Motion from the past. A new method to infer vestibular capacities of extinct species. C. R. Palevol. 9, 397–410 (2010).

    Article 

    Google Scholar 

  • Oman, C. M., Marcus, E. N. & Curthoys, I. S. The influence of the semicircular canal morphology on endolymph flow dynamics. Acta Otolaryngol. 103, 1–13 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Georgi, J. A., Sipla, L. S. & Forster, C. A. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis. PLoS One 8, e58517 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417, 163–166 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Spoor, F. et al. The primate semicircular canal system and locomotion. Proc. Nat. Acad. Sci. USA 104, 10808–10812 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cox, P. G. & Jeffery, N. Geometry of the semicircular canals and extraocular muscles in rodents, lagomorphs, felids and modern humans. J. Anat. 213, 83–596 (2008).

    Google Scholar 

  • Cox, P. G. & Jeffery, N. Semicircular canals and agility: the influence of size and shape measures. J. Anat. 216, 37–47 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Silcox, M. T. et al. Semicircular canal system in early primates. J. Hum. Evol. 56, 315–327 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Lebrun, R. et al. Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J. Anat. 216, 368–380 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Billet, G. et al. High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc. R. Soc. Lond. B. 279, 3932–3939 (2012).

    Google Scholar 

  • Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Malinzak, M. D., Kaya, R. F. & Hullar, T. E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl Acad. Sci. USA 109, 914–919 (2012).

    Article 

    Google Scholar 

  • Alloing-Séguier, L. et al. The bony labyrinth in diprotodontian marsupial mammals: diversity in extant and extinct forms and relationships with size and phylogeny. J. Mamm. Evol. 20, 191–198 (2013).

    Article 

    Google Scholar 

  • Berlin, J. C., Kirk, E. C. & Rowe, T. B. Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS One 8, e79585 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS One 8, e61998 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grohé, C. et al. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pfaff, C., Martin, T. & Ruf, I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc. R. Soc. B 282, 20150744 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Melville Jones, G. & Spells, K. E. A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc. R. Soc. Lond. B Biol. Sci. 157, 403–419 (1963).

    ADS 
    Article 

    Google Scholar 

  • Kemp, A. D. & Kirk, E. C. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).

    Article 

    Google Scholar 

  • Ekdale, E. G. Form and function of the mammalian ear. J. Anat. 228, 324–337 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Goyens, J. High ellipticity reduces semicircular canal sensitivity in squamates compared to mammals. Sci. Rep. 9, 16428 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Witmer, L. M., Chatterjee, S., Franzosa, J. & Rowe, T. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425, 950–953 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lautenschlager, S., Rayfield, E. J., Altangerel, P., Zanno, L. E. & Witmer, L. M. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE 7, e52289 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cuthbertson, R. S., Maddin, H. C., Holmes, R. B. & Anderson, J. S. The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat. Rec. 298, 1597–1611 (2015).

    Article 

    Google Scholar 

  • Schade, M., Rauhut, O. W. M. & Evers, S. W. Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci. Rep. 10, 9259 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benson, R. B. J., Starmer-Jones, E., Close, R. A. & Walsh, S. A. Comparative analysis of vestibular ecomorphology in birds. J. Anat. 231, 990–1018 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dudgeon, T. W., Maddin, H. C., Evans, D. C. & Mallon, J. C. The internal cranial anatomy of Champsosaurus (Choristodera: Champsosauridae): implications for neurosensory function. Sci. Rep. 10, 7122 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bronzati, M. et al. Deep evolutionary diversification of semicircular canals in archosaurs. Curr. Biol. 31, 2520–2529 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hansen, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).

    ADS 
    Article 

    Google Scholar 

  • Ernst, C. H. & Barbour, R. W. Turtles Of The World. (Smithsonian Institution Press, Washington, D.C., 1989).

  • Evers, S. W. & Benson, R. B. J. A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group. Palaeontology 62, 93–134 (2019).

    Article 

    Google Scholar 

  • Joyce, W. G. A review of the fossil record of basal Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 58, 65–113 (2017).

    Article 

    Google Scholar 

  • Lautenschlager, S., Ferreira, G. S. & Werneburg, I. Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions. Front. Ecol. Evol. 6, 1–7 (2018).

    Article 

    Google Scholar 

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 123, 1–15 (1985).

    Article 

    Google Scholar 

  • Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 7, 13–26 (1978).

    MATH 
    Article 

    Google Scholar 

  • Foth, C. et al. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J. Anat. 235, 1078–1097 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Neenan, J. M. et al. Evolution of the sauropterygian labyrinth with increasingly pelagic lifestyles. Curr. Biol. 27, 3852–3858 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Loza, C. M., Latimer, A. E., Sánchez-Villagra, M. R. & Carlini, A. A. Sensory anatomy of the most aquatic of carnivorans: the Antarctic Ross seal, and convergences with other mammals. Biol. Lett. 13, 20170489 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Werneburg, I. & Maier, W. Diverging development of akinetic skulls in cryptodire and pleurodire turtles: an ontogenetic and phylogenetic study. Vertebr. Zool. 69, 113–143 (2019).

    Google Scholar 

  • Ferreira, G. S. & Werneburg, I. Evolution, diversity, and development of the craniocervical system in turtles with special reference to jaw musculature. In: Ziermann, J., Diaz, R. R. Jr, Diogo, R. (eds) Heads, Jaws and Muscles: Evolution, Development, Anatomical Diversity And Function (Springer, Cham, 2019).

  • David, R. J. A. et al. Comment on “The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization”, Science (in press).

  • Schwab, J. A. et al. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc. Nat. Acad. Sci. USA 117, 10422–10428 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, L. M. & Ornitz, D. M. Sculpturing the skull through neurosensory epithelial-mesenchymal signaling. Dev. Dyn. 248, 88–97 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Kandel, B. M. & Hullar, T. E. The relationship of head movements to semicircular canal size in cetaceans. J. Exp. Biol. 213, 1175–1181 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moll, D. Food and feeding behavior of the turtle, Dermatemys mawei, in Belize. J. Herpetol. 23, 445–447 (1989).

    Article 

    Google Scholar 

  • Evers, S. W. et al. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool. J. Linn. Soci. 187, 800–828 (2019).

    Google Scholar 

  • Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One 8, e66624 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Joyce, W. G. Phylogenetic relationships of Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 48, 3–102 (2007).

    Article 

    Google Scholar 

  • Sterli, J. & De La Fuente, M. S. Anatomy of Condorchelys antiqua Sterli, 2008, and the origin of the modern jaw closure mechanism in turtles. J. Vertebr. Paleontol. 30, 351–366 (2010).

    Article 

    Google Scholar 

  • Ferreira, G. S. et al. Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles. Sci. Rep. 10, 5505 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aerts, P., Van Damme, J. & Herrel, A. Intrinsic mechanics and control of fast cranio-cervical movements in aquatic feeding turtles. Am. Zool. 41, 1299–1310 (2001).

    Google Scholar 

  • Herrel, A., Van Damme, J. & Aerts, P. Cervical anatomy and function in turtles. In Biology Of Turtles. In: Wyneken, J., Godfrey, M. H., Bels, V. (eds) pp. 163–185 (CRC Press, Boca Raton, 2008).

  • Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS One 8, e66043 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guthrie, D. M. “Role of vision in fish behaviour”. In: T. J. Pitcher (eds) The Behaviour Of Teleost Fishes. pp. 75–113 (Springer, Boston, 1986).

  • Sterli, J. & Joyce, W. G. The cranial anatomy of the Early Jurassic turtle Kayentachelys aprix. Acta Paleontol. Pol. 52, 675–694 (2007).

    Google Scholar 

  • Werneburg, I. The tendinous framework in the temporal skull region of turtles and considerations about its morphological implications in amniotes: a review. Zool. Sci. 30, 141–153 (2013).

    Article 

    Google Scholar 

  • Werneburg, I. Neck motion in turtles and its relation to the shape of the temporal skull region. C. R. Palevol. 14, 527–548 (2015).

    Article 

    Google Scholar 

  • TTWG, Turtle Taxonomy Working Group, Rhodin, A. G. J. et al. Turtles of the world, 8th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. Chelonian Res. Monogr. 7, 1–292 (2017).

    Google Scholar 

  • Gower, J. C. Generalized Procrustes analysis. Psychometrika 40, 33–50 (1975).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).

  • R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2019).

  • Rholf, E. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).

    Article 

    Google Scholar 

  • Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS One 9, e94335 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kendall, D. G. The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977).

    Article 

    Google Scholar 

  • Bookstein, F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1, 97–118 (1997).

    Article 

    Google Scholar 

  • Gunz, P., Mitteroecker, P. & Bookstein, F. L. “Semilandmarks in three dimensions. In: Slice, D. E. (ed) Modern Morphometrics in Physical Anthropology, pp. 73–98 (Kluwer Academic, 2005).

  • Webster, M. & Sheets, H. A practical introduction to land- mark-based geometric morphometrics. In: Alroy, J., Hunt, G. (eds) Quantitative Methods in Paleobiology. Paleontological Society Papers 16, pp. 163–188 (Paleontological Society, 2010).

  • Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).

    Google Scholar 

  • Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–242 (1986).

    MATH 

    Google Scholar 

  • Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article 

    Google Scholar 

  • Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography, and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 171773 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bapst, D. W. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).

    Article 

    Google Scholar 

  • Laurin, M. The evolution of body size, Cope’s Rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Pace, C. M., Blob, R. W. & Westneat, M. W. Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. J. Exp. Biol. 204, 3261–3271 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Claude, J., Paradis, E., Tong, H. & Auffray, J.-C. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biol. J. Linn. Soc. 79, 485–501 (2003).

    Article 

    Google Scholar 

  • Angielczyk, K. D., Feldman, C. R. & Miller, G. R. Adaptive evolution of plastron shape in emydine turtles. Evolution 65, 377–394 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Angielczyk, K. D., Burroughs, R. W. & Feldman, C. R. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the World’s turtles. J. Exp. Zool. Mol. Dev. Evol. 324, 270–294 (2015).

    Article 

    Google Scholar 

  • Pritchard, P. C. H. Oiscivory in turtles, and evolution of the long-necked Chelidae. Symp. Zool. Soc. Lond. 52, 87–110 (1984).

    Google Scholar 

  • Joyce, W. G. et al. A new pelomedusoid turtle, Sahonachelys mailakavava, from the Late Cretaceous of Madagascar provides evidence for convergent evolution of specialized suction feeding among pleurodires. R. Soc. Open Sci. 8, 210098 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adams, D. C. A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data. Evolution 68, 2675–2688 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67, 14–31 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lowi-Merri, T. M., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 1–23 (2021).

    Article 

    Google Scholar 

  • Adams, D. C. & Collyer, M. L. Phylogenetic ANOVA: group-clade aggregation, biological challanges, and a refined permutation procedure. Evolution 72, 1204–1215 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Friedman, S. T., Martinez, C. M., Price, S. A. & Wainwright, P. C. The influence of size on body shape diversification across Indo-Pacific shore fishes. Evolution 73, 1873–1884 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Foth, C., Rabi, M. & Joyce, W. G. Skull variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. Acta Zool. 98, 310–325 (2017).

    Article 

    Google Scholar 

  • Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ritz, C. & Spiess, A.-N. qpcR: an R package for sigmoidal model selection in quantitative real-rime polymerase chain reaction analysis. Bioinformatics 24, 1549–1551 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Akaike, H. Information Theory As An extension Of The Maximum Likelihood Principle. In: Petrov, B. N., Csaki, F. (eds) Second International Symposium on Information Theory, pp. 267–281 (Akademiai Kiado, New York, 1973).

  • Burnham, K. P., Anderson, D. Model selection and multi-model inference: a practical information-theoretic approach. (Springer, New York, 2002).

  • Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R. Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–141, URL: https://CRAN.R-project.org/package=nlme. (2019).

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Racicot, R. A. & Colbert, M. W. Morphology and variation in porpoise (Cetacea: Phocoenidae) cranial endocasts. Anat. Rec. 296, 979–992 (2013).

    Article 

    Google Scholar 

  • Evers, S. W. Code and Data to “Independent origin of large labyrinth size in turtles”. Zenodo https://doi.org/10.5281/zenodo.7024572 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Split westerlies over Europe in the early Little Ice Age

    3Q: Why Europe is so vulnerable to heat waves