in

Individual variability in habitat selection by aquatic insects is driven by taxonomy rather than specialisation

  • Rosenzweig, M. L. Habitat selection and population interactions: the search for mechanism. Am. Nat. 137, S5–S28 (1991).

    Article 

    Google Scholar 

  • Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).

    Article 

    Google Scholar 

  • Resetarits, W. J. Habitat selection behaviour links local and regional scales in aquatic systems: Habitat selection at multiple spatial scales. Ecol. Lett. 8, 480–486 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Morris, D. W. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B Biol. Sci. 278, 2401–2411 (2011).

    Article 

    Google Scholar 

  • Resetarits, W. J. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129, 155–160 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).

    Article 

    Google Scholar 

  • Klečka, J. & Boukal, D. S. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS ONE 7, e37741 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nilsson, P. A. & Brönmark, C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos 88, 539–546 (2000).

    Article 

    Google Scholar 

  • Šigutová, H. et al. Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa. Sci. Rep. 11, 18928 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pintar, M. R. & Resetarits, W. J. Match and mismatch: integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects. Ecol. Evol. 11, 1902–1917 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: oviposition preference matches larval success in cope’s gray treefrog Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).

    Article 

    Google Scholar 

  • Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).

  • Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evol. 54, 311–328 (2008).

    Article 

    Google Scholar 

  • McLoughlin, P. D., Boyce, M. S., Coulson, T. & Clutton-Brock, T. Lifetime reproductive success and density-dependent, multi-variable resource selection. Proc. R. Soc. B Biol. Sci. 273, 1449–1454 (2006).

    Article 

    Google Scholar 

  • Morris, D. W. Scales and costs of habitat selection in heterogeneous landscapes. Evol. Ecol. 6, 412–432 (1992).

    Article 

    Google Scholar 

  • McLoughlin, P. D., Morris, D. W., Fortin, D., Wal, E. V. & Contasti, A. L. Considering ecological dynamics in resource selection functions. J. Anim. Ecol. 79, 4–12 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Leclerc, M., Dussault, C. & St-Laurent, M.-H. Behavioural strategies towards human disturbances explain individual performance in woodland caribou. Oecologia 176, 297–306 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forstmeier, W. & Birkhead, T. R. Repeatability of mate choice in the zebra finch: consistency within and between females. Anim. Behav. 68, 1017–1028 (2004).

    Article 

    Google Scholar 

  • Gómez-Laplaza, L. M. The influence of social status on shoaling preferences in the freshwater angelfish (Pterophyllum scalare). Behaviour 142, 827–844 (2005).

    Article 

    Google Scholar 

  • Gillingham, M. P. & Parker, K. L. The importance of individual variation in defining habitat selection by moose in northern British Columbia. Alces 44, 7–20 (2008).

    Google Scholar 

  • Lesmerises, R. & St-Laurent, M.-H. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears. Oecologia 185, 415–425 (2017).

    Article 
    PubMed 

    Google Scholar 

  • van Beest, F. M. et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. Biotheoretica 19, 16–36 (1970).

    Article 

    Google Scholar 

  • Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).

    Article 

    Google Scholar 

  • Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).

    PubMed 

    Google Scholar 

  • Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).

    Article 

    Google Scholar 

  • Calenge, C., Dufour, A. B. & Maillard, D. K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol. Model. 186, 143–153 (2005).

    Article 

    Google Scholar 

  • Freitas, C., Kovacs, K. M., Lydersen, C. & Ims, R. A. A novel method for quantifying habitat selection and predicting habitat use. J. Appl. Ecol. 45, 1213–1220 (2008).

    Google Scholar 

  • Mitchell, L. J., Kohler, T., White, P. C. L. & Arnold, K. E. High interindividual variability in habitat selection and functional habitat relationships in European nightjars over a period of habitat change. Ecol. Evol. 10, 5932–5945 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richter, L. et al. So close and yet so different: the importance of considering temporal dynamics to understand habitat selection. Basic Appl. Ecol. 43, 99–109 (2020).

    Article 

    Google Scholar 

  • Tyler, J. A. & Rose, K. A. Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 4, 91–123 (1994).

    Article 

    Google Scholar 

  • Córdoba-Aguilar, A. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. (Oxford University Press, 2008).

  • Sandall, E. L. & Fischer, B. Be a professional: attend to the insects. Am. Entomol. 65, 176–179 (2019).

    Article 

    Google Scholar 

  • Blaustein, L. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community. in Evolutionary theory and processes: modern perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).

  • Helebrandová, J. B., Pyszko, P. & Dolný, A. Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata). Insects 10, 124 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hollis, K. & Guillette, L. What associative learning in insects tells us about the evolution of learning and fixed behavior. Int. J. Comp. Psychol. 28, 25706 (2015).

    Article 

    Google Scholar 

  • Papaj, D. R. & Lewis, A. C. Insect Learning: Ecological and Evolutinary Perspectives. (Chapman & Hall, 1993).

  • Simons, M. & Tibbetts, E. Insects as models for studying the evolution of animal cognition. Curr. Opin. Insect Sci. 34, 117–122 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).

    Article 

    Google Scholar 

  • Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).

    Google Scholar 

  • Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).

  • Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).

    Article 

    Google Scholar 

  • Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).

    Article 

    Google Scholar 

  • Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43 (Suppl.), 1–289 (2007).

  • Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).

    Article 

    Google Scholar 

  • Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).

    Article 

    Google Scholar 

  • Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).

  • Miller, K. B. & Bergsten, J. Predaceous diving beetle sexual systems. in Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 199–234 (Springer Netherlands, 2014).

  • Culler, L. E., Ohba, S. & Crumrine, P. Predator-prey interactions of dytiscids. in Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).

  • Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect Notonecta undulata. Ecol. Evol. 5, 2307–2316 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baines, C. B., Ferzoco, I. M. & McCauley, S. J. Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol. 71, 119 (2017).

    Article 

    Google Scholar 

  • Hungerford, H. B. The biology and ecology of aquatic and semiaquatic Hemiptera. Univ. Kans. Sci. Bull. 11, 3–334 (1919).

    Google Scholar 

  • Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).

    Article 

    Google Scholar 

  • Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).

    Article 

    Google Scholar 

  • Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Article 

    Google Scholar 

  • Bates, A., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (2021).

  • Harvill, M. L. The antipredatory behavior of the aquatic diving beetle, Coptotomus venustus (Say)(Coleoptera: Dytiscidae) in response to fish predation. (Texas A&M University, 1994).

  • McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).

    Article 

    Google Scholar 

  • Giller, P. S. Locomotory efficiency in the predation strategies of the British Notonecta (Hempitera, Heteroptera). Oecologia 52, 273–277 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gittelman, S. H. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae). Am. Midl. Nat. 92, 496–500 (1974).

    Article 

    Google Scholar 

  • Morris, D. W. Density-dependent habitat selection: testing the theory with fitness data. Evol. Ecol. 3, 80–94 (1989).

    Article 

    Google Scholar 

  • Holt, R. D. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208 (1985).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Briers, R. A. Metapopulation ecology of Notonecta in small ponds. Doctoral dissertation. (1999).

  • Popham, E. J. The migration of aquatic bugs with special reference to the Corixidae (Hemiptera Heteroptera). Arch. Für Hydrobiol. 60, 450–496 (1964).

    Google Scholar 

  • Doligez, B., Cadet, C., Danchin, E. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).

    Article 

    Google Scholar 

  • Pintar, M. R. & Resetarits, W. J. Aquatic beetles influence colonization of disparate taxa in small lentic systems. Ecol. Evol. 10, 12170–12182 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sebastián-González, E., Sánchez-Zapata, J. A., Botella, F. & Ovaskainen, O. Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. B Biol. Sci. 277, 2983–2990 (2010).

    Article 

    Google Scholar 

  • Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).

    Article 

    Google Scholar 

  • Buxton, V. L., Enos, J. K., Sperry, J. H. & Ward, M. P. A review of conspecific attraction for habitat selection across taxa. Ecol. Evol. 10, 12690–12699 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferzoco, I. M. C., Baines, C. B. & McCauley, S. J. Co-occurring Notonecta (Hemiptera: Heteroptera: Notonectidae) species differ in their behavioral response to cues of Belostoma (Hemiptera: Heteroptera: Belostomatidae) predation risk. Ann. Entomol. Soc. Am. 112, 402–408 (2019).

    Article 

    Google Scholar 

  • Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).

    Article 

    Google Scholar 

  • Ruckstuhl, K. E. Sexual segregation in vertebrates: proximate and ultimate causes. Integr. Comp. Biol. 47, 245–257 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hochkirch, A., Gröning, J. & Krause, S. Intersexual niche segregation in Cepero’s ground-hopper Tetrix ceperoi. Evol. Ecol. 21, 727–738 (2007).

    Article 

    Google Scholar 

  • Romey, W. L. & Wallace, A. C. Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav. Ecol. 18, 910–915 (2007).

    Article 

    Google Scholar 

  • Main, M. B., Weckerly, F. W. & Bleich, V. C. Sexual segregation in ungulates: new directions for research. J. Mammal. 77, 449–461 (1996).

    Article 

    Google Scholar 

  • Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) (Aldine Publishing Company, 1972).

  • Bonduriansky, R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 76, 305–339 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foster, S. E. & Soluk, D. A. Protecting more than the wetland: The importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly Somatochlora hineana Williamson. Biol. Conserv. 127, 158–166 (2006).

    Article 

    Google Scholar 

  • Miller, K. B. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol. J. Linn. Soc. 79, 359–388 (2003).

    Article 

    Google Scholar 

  • Watson, P. J., Stallmann, R. R. & Arnqvist, G. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 151, 46–58 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rowe, L., Krupa, J. J. & Sih, A. An experimental test of condition-dependent mating behavior and habitat choice by water striders in the wild. Behav. Ecol. 7, 474–479 (1996).

    Article 

    Google Scholar 

  • McLain, D. K. & Pratt, A. E. The cost of sexual coercion and heterospecific sexual harassment on the fecundity of a host-specific, seed-eating insect (Neacoryphus bicrucis). Behav. Ecol. Sociobiol. 46, 164–170 (1999).

    Article 

    Google Scholar 

  • Stone, G. N. Female foraging responses to sexual harassment in the solitary bee Anthophora plumipes. Anim. Behav. 50, 405–412 (1995).

    Article 

    Google Scholar 

  • Martens, A. & Rehfeldt, G. Female aggregation in Platycypha caligata (Odonata: Chlorocyphidae): A tactic to evade male interference during oviposition. Anim. Behav. 38, 369–374 (1989).

    Article 

    Google Scholar 

  • Kolar, V. & Boukal, D. S. Habitat preferences of the endangered diving beetle Graphoderus bilineatus: implications for conservation management. Insect Conserv. Divers. 13, 480–494 (2020).

    Article 

    Google Scholar 

  • Wilcox, C. Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Isr. J. Zool. 47, 459–475 (2001).

    Article 

    Google Scholar 

  • Baines, C. B., Ferzoco, I. M. C. & McCauley, S. J. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88, 1263–1274 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Liao, W., Venn, S. & Niemelä, J. Diving beetle (Coleoptera: Dytiscidae) community dissimilarity reveals how low landscape connectivity restricts the ecological value of urban ponds. Landsc. Ecol. 37, 1049–1058 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures