in

Industrial energy development decouples ungulate migration from the green wave

  • Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).

    PubMed 

    Google Scholar 

  • Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).

    Article 

    Google Scholar 

  • Holdo, R. M., Holt, R. D., Sinclair, A. R., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J. et al.) 131–143 (Oxford Univ. Press, 2011).

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Middleton, A. D. et al. Conserving transboundary wildlife migrations: recent insights from the Greater Yellowstone Ecosystem. Front. Ecol. Environ. 18, 83–91 (2020).

    Article 

    Google Scholar 

  • Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).

    Article 

    Google Scholar 

  • Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).

    Article 

    Google Scholar 

  • Drent, R., Ebbinge, B. & Weijand, B. Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh. Ornithol. Ges. Bayern 23, 239–264 (1978).

    Google Scholar 

  • van der Graaf, S. A. J., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).

    Google Scholar 

  • Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. R. Soc. B. 283, 20160456 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos https://doi.org/10.1111/oik.05227 (2018).

  • Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sawyer, H. et al. A framework for understanding semi‐permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50, 68–78 (2013).

    Article 

    Google Scholar 

  • Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Berry, J. Aspects of wildebeest Connochaetes taurinus ecology in the Etosha National Park—a synthesis for future management. Madoqua 1997, 137–148 (1997).

    Google Scholar 

  • Williamson, D. & Williamson, J. Botswana’s fences and the depletion of Kalahari wildlife. Oryx 18, 218–222 (1984).

    Article 

    Google Scholar 

  • Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Kauffman, M. J., Meacham, J. E., Sawyer, H., Rudd, W. & Ostlind, E. Wild Migrations: Atlas of Wyoming’s Ungulates (Oregon State Univ. Press, 2018).

  • Wyckoff, T. B., Sawyer, H., Albeke, S. E., Garman, S. L. & Kauffman, M. J. Evaluating the influence of energy and residential development on the migratory behavior of mule deer. Ecosphere 9, e02113 (2018).

    Article 

    Google Scholar 

  • Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: effects of anthropogenically altered landscapes. PLoS ONE 8, e64548 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lendrum, P. E., Anderson, C. R. Jr, Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural‐gas development. Ecosphere 3, 82 (2012).

  • Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Sawyer, H., LeBeau, C. W., McDonald, T. L., Xu, W. & Middleton, A. D. All routes are not created equal: an ungulate’s choice of migration route can influence its survival. J. Appl. Ecol. 56, 1860–1869 (2019).

    Google Scholar 

  • Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).

    Article 

    Google Scholar 

  • Mysterud, A., Langvatn, R., Yoccoz, N. G. & Stenseth, N. C. Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J. Anim. Ecol. 70, 915–923 (2001).

    Article 

    Google Scholar 

  • Johnson, H. E. et al. Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob. Change Biol. 23, 578–591 (2017).

    Article 

    Google Scholar 

  • Sawyer, H., Korfanta, N. M., Nielson, R. M., Monteith, K. L. & Strickland, D. Mule deer and energy development—long-term trends of habituation and abundance. Glob. Change Biol. 23, 4521–4529 (2017).

    Article 

    Google Scholar 

  • Sawyer, H., Lambert, M. S. & Merkle, J. A. Migratory disturbance thresholds with mule deer and energy development. J. Wildl. Manag. 84, 930–937 (2020).

    Article 

    Google Scholar 

  • Uezu, A., Metzger, J. P. & Vielliard, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123, 507–519 (2005).

    Article 

    Google Scholar 

  • Keeley, A. T. H., Beier, P. & Jenness, J. S. Connectivity metrics for conservation planning and monitoring. Biol. Conserv. 255, 109008 (2021).

    Article 

    Google Scholar 

  • Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Aikens, E. O. et al. Migration distance and maternal resource allocation determine timing of birth in a large herbivore. Ecology 102, e03334 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob. Change Biol. 26, 4215–4225 (2020).

    Article 

    Google Scholar 

  • Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).

    PubMed 

    Google Scholar 

  • Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).

    Article 

    Google Scholar 

  • Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Sawyer, H., Hayes, M., Rudd, B. & Kauffman, M. J. The Red Desert to Hoback Mule Deer Migration Assessment (Univ. Wyoming, 2014).

  • Berger, J., Young, J. K. & Berger, K. M. Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol. 6, e165 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

    Article 

    Google Scholar 

  • Vermote, E. MOD09A1 Surface Reflectance 8-day L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).

  • Pettorelli, N., Mysterud, A., Yoccoz, N. G., Langvatn, R. & Stenseth, N. C. Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc. R. Soc. B. 272, 2357–2364 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Hamel, S., Garel, M., Festa-Bianchet, M., Gaillard, J. M. & Cote, S. D. Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J. Appl. Ecol. 46, 582–589 (2009).

    Article 

    Google Scholar 

  • Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The evolution of parental care in salamanders

    Simulating neutron behavior in nuclear reactors