in

Infection with an acanthocephalan helminth reduces anxiety-like behaviour in crustacean host

  • Cézilly, F. & Perrot-Minnot, M. J. Interpreting multidimensionality in parasite-induced phenotypic alterations: Panselectionism versus parsimony. Oikos 119, 1224–1229 (2010).

    Article 

    Google Scholar 

  • Moore, J. Parasites and the Behavior of Animals. (Oxford University Press on Demand, 2002).

    Google Scholar 

  • Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).

    Article 

    Google Scholar 

  • Weinersmith, K. L. What’s gotten into you? A review of recent research on parasitoid manipulation of host behavior. Curr. Opin. Insect Sci. 33, 37–42 (2019).

    Article 

    Google Scholar 

  • Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC. Ecol. 11, (2011).

  • Lagrue, C., Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. & Bollache, L. Modification of hosts’ behavior by a parasite: Field evidence for adaptive manipulation. Ecology 88, 2839–2847 (2007).

    Article 

    Google Scholar 

  • Berdoy, M., Webster, J. P. & Mcdonald, D. W. Fatal attraction in rats infected with Toxoplasma gondii. Proc. R. Soc. B Biol. Sci. 267, 1591–1594 (2000).

    Article 
    CAS 

    Google Scholar 

  • Perrot-Minnot, M. J., Kaldonski, N. & Cézilly, F. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. Int. J. Parasitol. 37, 645–651 (2007).

    Article 

    Google Scholar 

  • Cézilly, F. & Perrot-Minnot, M. J. Studying adaptive changes in the behaviour of infected hosts: A long and winding road. Behav. Proc. 68, 223–228 (2005).

    Article 

    Google Scholar 

  • Seppälä, O. & Jokela, J. Host manipulation as a parasite transmission strategy when manipulation is exploited by non-host predators. Biol. Lett. 4, 663–666 (2008).

    Article 

    Google Scholar 

  • Dianne, L. et al. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65, 2692–2698 (2011).

    Article 

    Google Scholar 

  • Iritani, R. & Sato, T. Host-manipulation by trophically transmitted parasites: The switcher-paradigm. Trends Parasitol. 34, 934–944 (2018).

    Article 

    Google Scholar 

  • Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).

    Article 

    Google Scholar 

  • Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasite Vectors 11, 1–6 (2018).

    Article 

    Google Scholar 

  • Perrot-Minnot, M. J. & Cézilly, F. Investigating candidate neuromodulatory systems underlying parasitic manipulation: Concepts, limitations and prospects. J. Exp. Biol. 216, 134–141 (2013).

    Article 

    Google Scholar 

  • Adamo, S. A. Parasites: Evolution’s neurobiologists. J. Exp. Biol. 216, 3–10 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, M., Lamberton, P. H. L. & Webster, J. P. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system. Horm. Behav. 62, 191–201 (2012).

    Article 

    Google Scholar 

  • Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article 
    CAS 

    Google Scholar 

  • Perry, C. J. & Baciadonna, L. Studying emotion in invertebrates: What has been done, what can be measured and what they can provide. J. Exp. Biol. 220, 3856–3868 (2017).

    Article 

    Google Scholar 

  • Adamec, R. E., Burton, P., Shallow, T. & Budgell, J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure—Implications for anxiety associated with posttraumatic stress disorder. Physiol. Behav. 65, 723–737 (1998).

    Article 

    Google Scholar 

  • Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1–23 (2020).

    Article 

    Google Scholar 

  • Hamilton, T. J., Kwan, G. T., Gallup, J. & Tresguerres, M. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness. Sci. Rep. 6, 4–9 (2016).

    Article 

    Google Scholar 

  • de Bekker, C. et al. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 16, 1–23 (2015).

    Article 

    Google Scholar 

  • Shaw, J. C. et al. Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis. Proc. R. Soc. B Biol. Sci. 276, 1137–1146 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fayard, M., Dechaume-Moncharmont, F. X., Wattier, R. & Perrot-Minnot, M. J. Magnitude and direction of parasite-induced phenotypic alterations: A meta-analysis in acanthocephalans. Biol. Rev. 95, 1233–1251 (2020).

    Article 

    Google Scholar 

  • Tain, L., Perrot-Minnot, M. J. & Cézilly, F. Altered host behaviour and brain serotonergic activity caused by acanthocephalans: Evidence for specificity. Proc. R. Soc. B Biol. Sci. 273, 3039–3045 (2006).

    Article 
    CAS 

    Google Scholar 

  • Perrot-Minnot, M. J., Maddaleno, M., Balourdet, A. & Cézilly, F. Host manipulation revisited: No evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct. Ecol. 26, 1007–1014 (2012).

    Article 

    Google Scholar 

  • Perrot-Minnot, M. J., Sanchez-Thirion, K. & Cézilly, F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc. R. Soc. B Biol. Sci. 281, (2014).

  • Perrot-Minnot, M. J., Banchetry, L. & Cézilly, F. Anxiety-like behaviour increases safety from fish predation in an amphipod crustacea. R. Soc. Open Sci. 4, (2017).

  • Perrot-Minnot, M. J., Balourdet, A. & Musset, O. Optimization of anesthetic procedure in crustaceans: Evidence for sedative and analgesic-like effect of MS-222 using a semi-automated device for exposure to noxious stimulus. Aquat. Toxicol. 240, 105981 (2021).

    Article 
    CAS 

    Google Scholar 

  • Barr, S., Laming, P. R., Dick, J. T. A. & Elwood, R. W. Nociception or pain in a decapod crustacean?. Anim. Behav. 75, 745–751 (2008).

    Article 

    Google Scholar 

  • Fossat, P., Bacqué-Cazenave, J., de Deurwaerdère, P., Delbecque, J. P. & Cattaert, D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 1979(344), 1293–1297 (2014).

    Article 
    ADS 

    Google Scholar 

  • Magee, B. & Elwood, R. W. Shock avoidance by discrimination learning in the shore crab (Carcinus maenas) is consistent with a key criterion for pain. J. Exp. Biol. 216, 353–358 (2013).

    Article 

    Google Scholar 

  • Rakitin, A., Tomsic, D. & Maldonado, H. Habituation and sensitization to an electrical shock in the crab Chasmagnathus. Effect of background illumination. Physiol. Behav. 50, 477–487 (1991).

    Article 
    CAS 

    Google Scholar 

  • Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yuan, T. F. & Hou, G. The effects of stress on glutamatergic transmission in the brain. Mol. Neurobiol. 51, 1139–1143 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fossat, P., Bacqué-Cazenave, J., de Deurwaerdère, P., Cattaert, D. & Delbecque, J. P. Serotonin, but not dopamine, controls the stress response and anxiety-like behavior in the crayfish Procambarus clarkii. J. Exp. Biol. 218, 2745–2752 (2015).

    Google Scholar 

  • Benesh, D. P., Valtonen, E. T. & Seppälä, O. Multidimensionality and intra-individual variation in host manipulation by an acanthocephalan. Parasitology 135, 617–626 (2008).

    Article 
    CAS 

    Google Scholar 

  • Kaldonski, N., Perrot-Minnot, M. J. & Cézilly, F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim. Behav. 74, 1311–1317 (2007).

    Article 

    Google Scholar 

  • Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. & Cézilly, F. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Parasitology 135, 627–632 (2008).

    Article 
    CAS 

    Google Scholar 

  • Parker, G. A., Ball, M. A., Chubb, J. C., Hammerschmidt, K. & Milinski, M. When should a trophically transmitted parasite manipulate its host?. Evolution 63, 448–458 (2009).

    Article 

    Google Scholar 

  • Paul, E. S. & Mendl, M. T. Animal emotion: Descriptive and prescriptive definitions and their implications for a comparative perspective. Appl. Anim. Behav. Sci. 205, 202–209 (2018).

    Article 

    Google Scholar 

  • Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article 
    CAS 

    Google Scholar 

  • Weinberger, J. & Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 151, 77–83 (2014).

    Article 
    CAS 

    Google Scholar 

  • Curran, K. P. & Chalasani, S. H. Serotonin circuits and anxiety: What can invertebrates teach us?. Invertebr. Neurosci. 12, 81–92 (2012).

    CAS 

    Google Scholar 

  • Mohammad, F. et al. Ancient anxiety pathways influence Drosophila defense behaviors. Curr. Biol. 26, 981–986 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kavaliers, M. & Colwell, D. D. Decreased predator avoidance in parasitized mice: neuromodulatory correlates. Parasitology 111, 257–263 (1995).

    Article 

    Google Scholar 

  • Chivers, D. P., Wisenden, B. D. & Smith, R. J. F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52, 315–320 (1996).

    Article 

    Google Scholar 

  • Hazlett, B. A., Acquistapace, P. & Gherardi, F. Differences in memory capabilities in invasive and native crayfish. J. Crustac. Biol. 22, 439–448 (2002).

    Article 

    Google Scholar 

  • R Core Team. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).


  • Source: Ecology - nature.com

    Billion-dollar NASA satellite will track Earth’s water

    Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph