Polyzos, S. & Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. Theor. Empir. Res. Urban Manag. 15, 5–23 (2020).
Ledec, G. & Posas, P. J. Biodiversity conservation in road projects: Lessons from World Bank experience in Latin America. Transp. Res. Rec. 1819, 198–202 (2003).
Google Scholar
Hughes, A. C. Understanding and minimizing environmental impacts of the Belt and Road Initiative. Conserv. Biol. 33, 883–894 (2019).
Google Scholar
Seiler, A. in COST 341—habitat fragmentation due to transportation infrastructure: the European review (eds Trocmé, M. et al.) Ch. 3, 31–50 (Office for Official Publications of the European Communities, 2002).
Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Appl. Geogr. 42, 63–72. https://doi.org/10.1016/j.apgeog.2013.05.001 (2013).
Google Scholar
Plămădeal, V. & Slobodeaniuc, S. Negative impact of railway transport on the ambient environment. J. Eng. Sci. https://doi.org/10.5281/zenodo.2640044 (2019).
Lala, F. et al. Wildlife roadkill in the Tsavo Ecosystem, Kenya: Identifying hotspots, potential drivers, and affected species. Heliyon 7, e06364 (2021).
Google Scholar
Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).
Google Scholar
Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).
Google Scholar
Clair, C. C. S., Whittington, J., Forshner, A., Gangadharan, A. & Laskin, D. N. Railway mortality for several mammal species increases with train speed, proximity to water, and track curvature. Sci. Rep. 10, 20476. https://doi.org/10.1038/s41598-020-77321-6 (2020).
Google Scholar
Kušta, T., Ježek, M. & Keken, Z. Mortality of large mammals on railway tracks. Sci. Agric. Bohem. 42, 12–18 (2011).
Dorsey, B. & Olsson, M. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 26, 219–227 (Wiley, 2015).
Barrientos, R. & Borda-de-Água, L. Railway Ecology (eds Borda-de-Água, L. et al.) Ch. 4, 43–64 (Springer Open, 2017).
Lucas, P. S., de Carvalho, R. G. & Grilo, C. Railway Ecology Ch. Chapter 6, 81–99 (2017).
Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: Similarities and differences. Eur. J. Wildl. Res. 65, 1–9. https://doi.org/10.1007/s10344-018-1248-0 (2019).
Google Scholar
Jasińska, K. D. et al. Linking habitat composition, local population densities and traffic characteristics to spatial patterns of ungulate-train collisions. J. Appl. Ecol. 56, 2630–2640. https://doi.org/10.1111/1365-2664.13495 (2019).
Google Scholar
Smith, D. J., Ree, R. v. d. & Rosell, C. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 21, 172–183 (Wiley, 2015).
Gilhooly, P. S., Nielsen, S. E., Whittington, J. & Clair, C. C. S. Wildlife mortality on roads and railways following highway mitigation. Ecosphere 10, e02597 (2019).
Google Scholar
Clevenger, A. P., Chruszcz, B. & Gunson, K. E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 29, 646–653 (2001).
Simpson, N. O. et al. Overpasses and underpasses: Effectiveness of crossing structures for migratory ungulates. J. Wildl. Manag. 80, 1370–1378. https://doi.org/10.1002/jwmg.21132 (2016).
Google Scholar
Seidler, R. G., Green, D. S. & Beckmann, J. P. Highways, crossing structures and risk: Behaviors of Greater Yellowstone pronghorn elucidate efficacy of road mitigation. Glob. Ecol. Conserv. 15, e00416. https://doi.org/10.1016/j.gecco.2018.e00416 (2018).
Google Scholar
Huijser, M. P. et al. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 197, 61–68. https://doi.org/10.1016/j.biocon.2016.02.002 (2016).
Google Scholar
Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildl. Biol. 14, 111–117 (2008).
Google Scholar
Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia: Factors influencing their effectiveness. Transp. Res. Rec. 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).
Google Scholar
Foster, M. L. & Humphrey, S. R. Use of highway underpasses by Florida panthers and other wildlife. Wildl. Soc. Bull. 23, 95–100 (1995).
Caldwell, M. R. & Klip, J. M. K. Wildlife interactions within highway underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2019).
Google Scholar
Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).
Google Scholar
Mcdonald, W. & Clair, C. C. S. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93 (2004).
Google Scholar
Mata Estacio, C., Hervás Bengoechea, I., Herranz Barrera, J., Suárez Cardona, F. & Arrazola, J. E. M. International Conference on Ecology and Transportation (ICOET 2003) Federal Highway Administration.
Sawyer, H., Lebeau, C. & Hart, T. Mitigating roadway impacts to migratory mule deer—A case study with underpasses and continuous fencing. Wildl. Soc. Bull. 36, 492–498. https://doi.org/10.1002/wsb.166 (2012).
Google Scholar
Rodriguez, A., Crema, G. & Delibes, M. Use of non-wildlife passages across a high speed railway by terrestrial vertebrates. J. Appl. Ecol. 33, 1527–1540 (1996).
Google Scholar
Yanes, M., Velasco, J. M. & Sufirez, F. Permeability of roads and railways to vertebrates: The importance of culverts. Biol. Conserv. 71, 217–222 (1995).
Google Scholar
Rodriguez, A., Crema, G. & Delibes, M. Factors affecting crossing of red foxes and wildcats through non-wildlife passages across a high-speed railway. Ecography 2, 287–294 (1997).
Google Scholar
Weeks, S. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 43, 353–356 (Wiley, 2015).
Okita-Ouma, B. et al. Effectiveness of wildlife underpasses and culverts in connecting elephant habitats: A case study of new railway through Kenya’s Tsavo National Parks. Afr. J. Ecol. 59(3), 624–640 (2021).
Google Scholar
Collinson, W., Davies-Mostert, H., Roxburgh, L. & van der Ree, R. Status of road ecology research in Africa: Do we understand the impacts of roads, and how to successfully mitigate them?. Front. Ecol. Evol. 7, 479. https://doi.org/10.3389/fevo.2019.00479 (2019).
Google Scholar
Wang, Y., Guan, L., Chen, J. & Kong, Y. Influences on mammals frequency of use of small bridges and culverts along the Qinghai-Tibet railway, China. Ecol. Res. 33, 879–887. https://doi.org/10.1007/s11284-018-1578-0 (2018).
Google Scholar
Ng, S. J., Dole, J. W., Sauvajot, R. M., Riley, S. P. D. & Valone, T. J. Use of highway undercrossings by wildlife in southern California. Biol. Conserv. 115, 499–507. https://doi.org/10.1016/s0006-3207(03)00166-6 (2004).
Google Scholar
Mata, C., Hervas, I., Herranz, J., Suarez, F. & Malo, J. E. Are motorway wildlife passages worth building? Vertebrate use of road-crossing structures on a Spanish motorway. J. Environ. Manag. 88, 407–415. https://doi.org/10.1016/j.jenvman.2007.03.014 (2008).
Google Scholar
Mata, C., Herranz, J. & Malo, J. E. Attraction and avoidance between predators and prey at wildlife crossings on roads. Diversity 12, 166. https://doi.org/10.3390/d12040166 (2020).
Google Scholar
Stewart, L., Russell, B., Zelig, E., Patel, G. & Whitney, K. S. Wildlife crossing design influences effectiveness for small and large mammals in Banff National Park. Case Stud. Environ. 4, 1231752. https://doi.org/10.1525/cse.2020.1231752 (2020).
Google Scholar
Mysłajek, R. W., Nowak, S., Kurek, K., Tołkacz, K. & Gewartowska, O. Utilisation of a wide underpass by mammals on an expressway in the Western Carpathians, S Poland. Folia Zool. 65, 225–232. https://doi.org/10.25225/fozo.v65.i3.a8.2016 (2016).
Google Scholar
Clevenger, A. P. & Waltho, N. factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56 (2000).
Google Scholar
Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208. https://doi.org/10.1016/j.cub.2015.10.046 (2015).
Google Scholar
van der Ree, R., Gagnon, J. W. & Smith, D. J. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 20, 159–171 (Wiley, 2015).
Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2006).
Google Scholar
Hepenstrick, D., Thiel, D., Holderegger, R. & Gugerli, F. Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl. Ecol. 13, 631–638. https://doi.org/10.1016/j.baae.2012.08.009 (2012).
Google Scholar
Wilson, R. E., Farley, S. D., McDonough, T. J., Talbot, S. L. & Barboza, P. S. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conserv. Genet. 16, 791–800. https://doi.org/10.1007/s10592-015-0700-x (2015).
Google Scholar
Jaeger, J. A. G. & Fahrig, L. Effects of road fencing on population persistence. Conserv. Biol. 18, 1651–1657 (2004).
Google Scholar
Ngene, S., Lala, F., Nzisa, M., Kimitei, K., Mukeka, J., Kiambi, S., Davidson, Z., Bakari, S., Lyimo, E. & Khayale, C. (eds Arusha Kenya Wildlife Service (KWS) and Tanzania Wildlife Research Institute (TAWIRI)) (2017).
World Resources Institute, Department of Resource Surveys and Remote Sensing Ministry of Environment and Natural Resources Kenya, Central Bureau of Statistics Ministry of Planning and National Development Kenya & International Livestock Research Institute. Nature’s Benefits in Kenya, An Atlas of Ecosystems and Human Well-Being (World Resources Institute, 2007).
Wijngaarden, W. V. Elephants, trees, grass, grazers: relationships between climate, soils, vegetation, and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya) Doctor of Philosophy thesis, Landbouwhogeschool te Wageningen (1985).
Stuart, C. Field Guide to Tracks & Signs of Southern, Central & East African Wildlife (Penguin Random House South Africa, 2013).
Murie, O. J. & Elbroch, M. A Field Guide to Animal Tracks Vol. 3 (Houghton Mifflin Harcourt, 2005).
Kerley, G. I. H., Pressey, R. L., Cowling, R. M., Boshoff, A. F. & Sims-Castley, R. Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biol. Conserv. 112, 169–190. https://doi.org/10.1016/S0006-3207(02)00426-3 (2003).
Google Scholar
R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).
Hayward, M. W., Hayward, G. J., Tambling, C. J. & Kerley, G. I. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?. PLoS ONE 6, e23607 (2011).
Google Scholar
De Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).
Google Scholar
Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322. https://doi.org/10.1017/S0952836905007508 (2005).
Google Scholar
Davidson, Z. et al. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid Savanna. PLoS ONE 8, e55182. https://doi.org/10.1371/journal.pone.0055182 (2013).
Google Scholar
Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biol. Conserv. 119, 507–516. https://doi.org/10.1016/j.biocon.2004.01.013 (2004).
Google Scholar
Hayward, M. W. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313. https://doi.org/10.1111/j.1469-7998.2006.00139.x (2006).
Google Scholar
Ogara, W. O. et al. Determination of carnivores prey base by scat analysis in Samburu community group ranches in Kenya. Afr. J. Environ. Sci. Technol. 4, 540–546 (2010).
Hayward, M. W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J. Zool. 270, 606–614. https://doi.org/10.1111/j.1469-7998.2006.00183.x (2006).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Barton, K. & Barton, M. K. Package ‘MuMIn’. Version 1, 18 (2015).
Williams, E. M. Giraffe stature and neck elongation: Vigilance as an evolutionary mechanism. Biology 5, 35 (2016).
Google Scholar
Shorrocks, B. The Giraffe: Biology, Ecology, Evolution and Behaviour (Wiley, 2016).
Google Scholar
Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Handbook of Road Ecology (eds Smith, D. J. & van der Ree, C. G. R.) Ch. 23, 190–197 (Wiley, 2015).
Harris, I. M., Mills, H. R. & Bencini, R. Multiple individual southern brown bandicoots (Isoodonobesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildl. Res. 37, 127–133 (2010).
Google Scholar
Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci. Rep. 7, 1–8 (2017).
Google Scholar
McLennan, M. R., Spagnoletti, N. & Hockings, K. J. The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. Int. J. Primatol. 38, 105–121. https://doi.org/10.1007/s10764-017-9962-0 (2017).
Google Scholar
Riley, E. P. Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. Int. J. Primatol. 28, 107–133. https://doi.org/10.1007/s10764-006-9104-6 (2007).
Google Scholar
Johnson-Ulrich, L., Yirga, G., Strong, R. L. & Holekamp, K. E. The effect of urbanization on innovation in spotted hyenas. Anim. Cogn. 24, 1027–1038. https://doi.org/10.1007/s10071-021-01494-4 (2021).
Google Scholar
Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).
Google Scholar
Devens, C. H. et al. Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa. Oryx 55, 34–45. https://doi.org/10.1017/S0030605318001473 (2021).
Google Scholar
Van Cleave, E. K. et al. Diel patterns of movement activity and habitat use by leopards (Panthera pardus pardus) living in a human-dominated landscape in central Kenya. Biol. Conserv. 226, 224–237. https://doi.org/10.1016/j.biocon.2018.08.003 (2018).
Google Scholar
Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable neighbours: Movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS ONE 9, e112044. https://doi.org/10.1371/journal.pone.0112044 (2014).
Google Scholar
Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: Leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162. https://doi.org/10.1017/S0030605314000106 (2016).
Google Scholar
Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, e02644. https://doi.org/10.1002/ecy.2644 (2019).
Google Scholar
Daniels, S. E., Fanelli, R. E., Gilbert, A. & Benson-Amram, S. Behavioral flexibility of a generalist carnivore. Anim. Cogn. 22, 387–396 (2019).
Google Scholar
Murray, M. H. & St. Clair, C. C. Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behav. Ecol. 26, 1520–1527. https://doi.org/10.1093/beheco/arv102 (2015).
Google Scholar
Galanti, V., Preatoni, D., Martinoli, A., Wauter, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114. https://doi.org/10.1016/j.mambio.2005.10.001 (2006).
Google Scholar
Douglas-Hamilton, I., Krink, T. & Vollrath, F. Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften 92, 158–163. https://doi.org/10.1007/s00114-004-0606-9 (2005).
Google Scholar
Coe, P. K. et al. Identifying migration corridors of mule deer threatened by highway development. Wildl. Soc. Bull. 39, 256–267. https://doi.org/10.1002/wsb.544 (2015).
Google Scholar
Spinage, C. A. Territoriality and social organization of the Uganda defassa waterbuck Kobus defassa ugandae. J. Zool. Lond. 159, 329–361 (1969).
Google Scholar
Mizutani, F. & Jewell, P. A. Home-range and movements of leopards (Panthera pardus) on a livestock ranch in Kenya. J. Zool. Lond. 244, 269–286 (1998).
Google Scholar
Riley, S. P. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741. https://doi.org/10.1111/j.1365-294X.2006.02907.x (2006).
Google Scholar
Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Model. 438, 109329. https://doi.org/10.1016/j.ecolmodel.2020.109329 (2020).
Google Scholar
Valls-Fox, H. et al. Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim. Conserv. 21, 365–375. https://doi.org/10.1111/acv.12403 (2018).
Google Scholar
Hibert, F. et al. Spatial avoidance of invading pastoral cattle by wild ungulates: Insights from using point process statistics. Biodivers. Conserv. 19, 2003–2024 (2010).
Google Scholar
Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J. & Johnson, B. K. Temporospatial distributions of elk, mule deer, and cattle: Resource partitioning and competitive displacement. J. Mammal. 83, 229–244. https://doi.org/10.1644/1545-1542(2002)083%3c0229:Tdoemd%3e2.0.Co;2 (2002).
Google Scholar
Leeuw, J. D. et al. Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biol. Conserv. 100, 297–306 (2001).
Google Scholar
Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia. Transp. Res. Rec 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).
Google Scholar
Dodd, N. L., Gagnon, J. W., Manzo, A. L. & Schweinsburg, R. E. Video surveillance to assess highway underpass use by elk in Arizona. J. Wildl. Manag. 71, 637–645. https://doi.org/10.2193/2006-340 (2007).
Google Scholar
Gordon, K. M. & Anderson, S. H. International Conference on Ecology and Transportation https://escholarship.org/uc/item/2wv1v6dz.
Bond, A. R. & Jones, D. N. Temporal trends in use of fauna-friendly underpasses and overpasses. Wildl. Res. 35, 103–112. https://doi.org/10.1071/WR07027 (2008).
Google Scholar
Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and fatness of free-living baboons reflect food availability and activity levels. Am. J. Primatol. 30, 149–161. https://doi.org/10.1002/ajp.1350300207 (1993).
Google Scholar
Kiffner, C. et al. Road-based line distance surveys overestimate densities of olive baboons. PLoS ONE 17, e0263314. https://doi.org/10.1371/journal.pone.0263314 (2022).
Google Scholar
Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C. & Couzin, I. D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. Elife 6, e19505. https://doi.org/10.7554/eLife.19505 (2017).
Google Scholar
Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).
Google Scholar
Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456. https://doi.org/10.1098/rspb.2016.0456 (2016).
Google Scholar
Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 127, 1060–1068. https://doi.org/10.1111/oik.05227 (2018).
Google Scholar
Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G. & Harris, S. In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. J. Geophys. Res. Biogeosci. 118, 1427–1437. https://doi.org/10.1002/jgrg.20096 (2013).
Google Scholar
Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave?. Am. Nat. 180, 407–424. https://doi.org/10.1086/667590 (2012).
Google Scholar
Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750. https://doi.org/10.1111/ele.12772 (2017).
Google Scholar
Mandinyenya, B., Monks, N., Mundy, P. J., Sebata, A. & Chirima, A. Habitat choices of African buffalo (Syncerus caffer) and plains zebra (Equus quagga) in a heterogeneous protected area. Wildl. Res. 47, 106–113. https://doi.org/10.1071/WR18201 (2020).
Google Scholar
Source: Ecology - nature.com