in

Influence of short and long term processes on SAR11 communities in open ocean and coastal systems

  • Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 2011;1:9.

    Google Scholar 

  • Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One. 2013;8:e83383.

    Google Scholar 

  • Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.

    Google Scholar 

  • Zhao X, Schwartz CL, Pierson J, Giovannoni SJ, McIntosh RJ, Nicastro D. Three-dimensional structure of the ultraoligotrophic marine bacterium “Candidatus pelagibacter ubique”. Appl Environ Microbiol. 2017;83:807–16.

    Google Scholar 

  • Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol. 1990;56:4.

    Google Scholar 

  • Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.

    CAS 

    Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 2002;418:630–3.

    Google Scholar 

  • Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.

    CAS 

    Google Scholar 

  • Field KG, Gordon D, Wright T, Rappé M, Urback E, Vergin K, et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol. 1997;63:63–70.

    CAS 

    Google Scholar 

  • Suzuki MT, Beja O, Taylor LT, DeLong EF. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol. 2001;3:323–31.

    CAS 

    Google Scholar 

  • Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.

    CAS 

    Google Scholar 

  • Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Syst Biol. 2012;8:595.

    Google Scholar 

  • Haro‐Moreno JM, Rodriguez‐Valera F, Rosselli R, Martinez‐Hernandez F, Roda‐Garcia JJ, Gomez ML, et al. Ecogenomics of the SAR11 clade. Environ Microbiol. 2020;22:1748–63.

    Google Scholar 

  • Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun. 2014;5:4346.

    CAS 

    Google Scholar 

  • Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, et al. One carbon metabolism in SAR11 Pelagic marine bacteria. PLoS One. 2011;6:e23973.

    CAS 

    Google Scholar 

  • Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500.

    CAS 

    Google Scholar 

  • Sun J, Todd JD, Thrash JC, Qian Y, Qian MC, Temperton B, et al. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol. 2016;1:16065.

    CAS 

    Google Scholar 

  • Halsey KH, Giovannoni SJ, Graus M, Zhao Y, Landry Z, Thrash JC, et al. Biological cycling of volatile organic carbon by phytoplankton and bacterioplankton: VOC cycling by marine plankton. Limnol Oceanogr. 2017;62:2650–61.

    CAS 

    Google Scholar 

  • Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Vergin K. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol Oceanogr. 2004;49:1073–83.

    CAS 

    Google Scholar 

  • Wagner S, Schubotz F, Kaiser K, Hallmann C, Waska H, Rossel PE, et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front Mar Sci. 2020;7:341.

    Google Scholar 

  • Quinn PK, Bates TS. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature. 2011;480:51–6.

    CAS 

    Google Scholar 

  • Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:624164.

    Google Scholar 

  • Tucker SJ, Freel KC, Monaghan EA, Sullivan CES, Ramfelt O, Rii YM, et al. Spatial and temporal dynamics of SAR11 marine bacteria across a nearshore to offshore transect in the tropical Pacific Ocean. PeerJ. 2021;9:e12274.

    Google Scholar 

  • Giovannoni SJ, Vergin KL. Seasonality in ocean microbial communities. Science. 2012;335:671–6.

    CAS 

    Google Scholar 

  • Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S RRNA gene data. Methods Ecol Evol. 2013;4:1111–9.

    Google Scholar 

  • Vergin K, Done B, Carlson C, Giovannoni S. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–13.

    Google Scholar 

  • Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.

    CAS 

    Google Scholar 

  • Ortmann AC, Santos TTL. Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient. FEMS Microbiol Ecol. 2016;92:fiw133.

    Google Scholar 

  • Vergin KL, Beszteri B, Monier A, Cameron Thrash J, Temperton B, Treusch AH, et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 2013;7:1322–32.

    CAS 

    Google Scholar 

  • Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.

    CAS 

    Google Scholar 

  • Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;12:6–393.

    Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.

    CAS 

    Google Scholar 

  • Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT, Dando PR, et al. Long-term oceanographic and ecological research in the Western English Channel. In: Advances in marine biology. Elsevier. 2005;47:1–105.

  • Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T, et al. The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol. 2009;11:3132–9.

    CAS 

    Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.

    CAS 

    Google Scholar 

  • Caporaso JG, Paszkiewicz K, Field D, Knight R, Gilbert JA. The Western English Channel contains a persistent microbial seed bank. ISME J. 2012;6:1089–93.

    CAS 

    Google Scholar 

  • Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.

    Google Scholar 

  • Vergin KL, Done B, Carlson CA, Giovannoni SJ. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–3.

    Google Scholar 

  • Choi CJ, Jimenez V, Needham DM, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:542372.

    Google Scholar 

  • Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1663–74.

    Google Scholar 

  • Matsen FA, Kodner RB, Armbrust E. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:1–6.

    Google Scholar 

  • Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, et al. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 2009;3:1148–63.

    Google Scholar 

  • Giovannoni SJ, Rappe MS, Vergin KL, Adair NL. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci. 1996;93:7979–84.

    CAS 

    Google Scholar 

  • Morris RM, Vergin KL, Cho J-C, Rappé MS, Carlson CA, Giovannoni SJ. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr. 2005;50:1687–96.

    CAS 

    Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.

    CAS 

    Google Scholar 

  • Lane DJ. Nucleic acid techniques in bacterial systematics. In: Nucleic acid techniques in bacterial systematics. New York: Wiley; p. 115–75.

  • Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.

    Google Scholar 

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    CAS 

    Google Scholar 

  • Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci. 2014;111:E2875–84.

    CAS 

    Google Scholar 

  • Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus–host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.

    CAS 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria; https://www.R-project.org/

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Package “vegan”.

  • Wickham H. ggplot2: ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.

    Google Scholar 

  • Wang W, Yan J. Shape-restricted regression splines with R package splines2. J Data Sci. 2021;19:498–517.

    Google Scholar 

  • Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.

    CAS 

    Google Scholar 

  • Ahdesmaki M, Fokianos K, Strimmer K, Ahdesmaki MM. Package ‘GeneCycle’ 2015.

  • Roesch A, Schmidbauer H and Roesch MA. Package ‘WaveletComp.’ 2014.

  • Lomas MW, Bates NR, Johnson RJ, Knap AH, Steinberg DK, Carlson CA. Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea. Deep Sea Res Part II Top Stud Oceanogr. 2013;93:16–32.

    CAS 

    Google Scholar 

  • Lomas MW, Bates NR, Johnson RJ, Steinberg DK, Tanioka T. Adaptive carbon export response to warming in the Sargasso Sea. Nature Commun. 2022;13:1–0.

    Google Scholar 

  • Sargeant SL, Murrell JC, Nightingale PD, Dixon JL. Basin-scale variability of microbial methanol uptake in the Atlantic Ocean. Biogeosciences. 2018;15:5155–67.

    CAS 

    Google Scholar 

  • Smyth TJ, Allen I, Atkinson A, Bruun JT, Harmer RA, Pingree RD, et al. Ocean net heat flux influences seasonal to interannual patterns of plankton abundance. PLoS One. 2014;9:e98709.

    Google Scholar 

  • Van de Peer Y. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24:3381–91.

    Google Scholar 

  • Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55:541–55.

    CAS 

    Google Scholar 

  • Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE. 2012;7:e42671.

    CAS 

    Google Scholar 

  • Stingl U, Tripp HJ, Giovannoni SJ. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time-series study site. ISME J. 2007;1:361–71.

    CAS 

    Google Scholar 

  • Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife. 2019;8:e46497.

    Google Scholar 

  • Lévy M, Jahn O, Dutkiewicz S, Follows MJ, d’Ovidio F. The dynamical landscape of marine phytoplankton diversity. J R Soc Interface. 2015;12:20150481.

    Google Scholar 

  • Hellweger FL, van Sebille E, Calfee BC, Chandler JW, Zinser ER, Swan BK, et al. The role of ocean currents in the temperature selection of plankton: insights from an individual-based model. PLoS ONE. 2016;11:e0167010.

    Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science. 2005;309:1242–5.

    CAS 

    Google Scholar 

  • Brown SN, Giovannoni S, Cho JC. Polyphasic taxonomy of marine bacteria from the SAR11 group Ia: Pelagibacter ubiquis (strain HTCC1062) & Pelagibacter bermudensis (strain HTCC7211). Oregon State University; 2012.

  • Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2022;16:178–89.

    CAS 

    Google Scholar 

  • Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.

    CAS 

    Google Scholar 

  • Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol. 2021;44:126185.

    CAS 

    Google Scholar 

  • Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Commun. 2022;13:1–12.

    Google Scholar 

  • McCarthy M, Spillane S, Walsh S, Kendon M. The meteorology of the exceptional winter of 2015/2016 across the UK and Ireland. Weather. 2016;71:305–13.

    Google Scholar 

  • Met Office. UK Climate Projections: Headline Findings. 2021.


  • Source: Ecology - nature.com

    Engineers solve a mystery on the path to smaller, lighter batteries

    MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs