Paerl, H. W. & Huisman, J. Climate. Blooms like it hot. Science 320, 57–58 (2008).
Google Scholar
Yamamoto, Y., Shiah, F. K. & Chen, Y. L. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann. Limnol. Int. J Limnol. 47, 167–173 (2011).
Google Scholar
Chen, Y. W., Qin, B. Q., Teubner, K. & Dokulil, M. T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 25, 445–453 (2003).
Google Scholar
Walsby, A. E. The nuisance algae: Curiosities in the biology of planktonic blue-green algae. Water Treat. Exam. 19, 359–373 (1970).
Reynolds, C. S. & Walsby, A. E. Water-blooms. Biol. Rev. 50, 437–481 (1975).
Google Scholar
Yonggang, L., Wei, Z., Ming, L. I., Amp, D. X. & Man, X. Effect of colony size on Microcystis diurnal vertical migration. J. Lake Sci. 25(3), 386–391 (2013).
Google Scholar
Ibelings, B. W., Mur, L. & Walsby, A. Diurnal variations in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13, 419–436 (1991).
Google Scholar
Kromkamp, J. C. & Mur, L. R. Buoyant density variations in the cyanobacterium Microcystis aeruginosa due to variations in the cellular carbohydrate content. FEMS Microbiol. Lett. 1, 105–109 (1984).
Google Scholar
Kromkamp, J. & Walsby, A. E. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12, 161–183 (1990).
Google Scholar
Visser, P. M., Passarge, J. & Mur, L. R. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349(1–3), 99–109 (1997).
Google Scholar
Medrano, E. A., Uittenbogaard, R. E., Pires, L. M. D., van de Wiel, B. J. H. & Clercx, H. J. H. Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol. Model. 248, 41–56 (2013).
Google Scholar
George, D. G. & Edwards, R. W. The effect of wind on the distribution of chlorophyll A and crustacean plankton in a shallow eutrophic reservoir. J. Appl. Ecol. 13, 667 (1976).
Google Scholar
Hutchinson, P. A. & Webster, I. T. On the distribution of blue-green algae in lakes: Wind-tunnel tank experiments. Limnol. Oceanogr. 9, 374–382 (1994).
Google Scholar
Ha, K., Kim, H. W., Jeong, K. S. & Joo, G. J. Vertical distribution of Microcystis population in the regulated Nakdong River, Korea. J. Limnol. 1, 225–230 (2000).
Google Scholar
Ma, X., Wang, Y., Feng, S. & Wang, S. Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ. Earth Sci. 74, 3805–3814 (2015).
Google Scholar
Ndong, M. et al. A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes. Water Res. 127, 191–203 (2017).
Google Scholar
Hozumi, A., Ostrovsky, I. S., Sukenik, A. & Gildor, H. Turbulence regulation of Microcystis surface scum formation and dispersion during a cyanobacteria bloom event. Inland Waters. 10, 51–70 (2020).
Google Scholar
Zhu, W., Chen, H., Xiao, M., Miquel, L. & Li, M. Wind induced turbulence caused colony disaggregation and morphological variations in the cyanobacterium Microcystis. J. Lake Sci. 33, 349 (2021).
Google Scholar
Wu, X. & Kong, F. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int. Rev. Hydrobiol. 94, 258–266 (2009).
Google Scholar
Xiao, M. et al. The influence of water oscillation on the vertical distribution of Microcystis colonies of different sizes. Fresenius Environ. Bull. 22, 3511–3518 (2013).
Google Scholar
Zhao, H. et al. Numerical simulation of the vertical migration of Microcystis (cyanobacteria) colonies based on turbulence drag. J. Limnol. 76, 190–198 (2017).
Li, M., Xiao, M., Zhang, P. & Hamilton, D. P. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res. 141, 340–348 (2018).
Google Scholar
Chien, Y. C., Wu, S. C., Chen, W. C. & Chou, C. C. Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environ. Eng. Sci. 30, 179–186 (2013).
Google Scholar
Medrano, E. A., van de Wiel, B. J. H., Uittenbogaard, R. E., Pires, L. M. D. & Clercx, H. J. H. Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions. Ecol. Model. 337, 200–210 (2016).
Google Scholar
Liu, H., Zheng, Z. C., Young, B. & Harris, T. D. Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir. Ecol. Model. 398, 20–34 (2019).
Google Scholar
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. & Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids. 24, 227–238 (1995).
Google Scholar
Geernaert, G. L., Larsen, S. E. & Hansen, F. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. 92, 127–139 (1987).
Google Scholar
Large, W. G. & Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336 (1981).
Google Scholar
Sellers, H. Development and application of “U.S.E.D.”: A hydroclimate lake stratification model. Ecol. Model. 21, 233–246 (1984).
Google Scholar
Morsi, S. A. & Alexander, A. J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972).
Google Scholar
Gosman, A. D. & Loannides, E. Aspects of computer simulation of liquid-fuelled combustor. AIAA J. 81, 482–490 (1981).
Li, M. et al. To increase size or decrease density? Different Microcystis species has different choice to form blooms. Sci. Rep. 6, 37056 (2016).
Google Scholar
Li, M., Zhu, W. & Gao, L. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ. Manag. 53, 947–958 (2014).
Google Scholar
Sun, D., Li, Y., Wang, Q. & Gao, J. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: A case study of Lake Taihu. Appl. Opt. 48(11), 1979–1989 (2009).
Google Scholar
Li, M., Zhu, W., Gao, L., Huang, J. & Li, L. Seasonal variations of morphospecies composition and colony size of Microcystis in a shallow hypertrophic lake (Lake Taihu, China). Fresenius Environ. Bull. 22, 3474–3483 (2013).
Google Scholar
Zhu, W. et al. Vertical distribution of Microcystis colony size in Lake Taihu: Its role in algal blooms. J. Great Lakes Res. 40, 949–955 (2014).
Google Scholar
Chen, Y. Y. & Liu, Q. Q. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mech. Sinica-Prc. 30(005), 656–666 (2014).
Google Scholar
Beletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A. & Ruberg, S. A. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett. 39, 6605 (2012).
Google Scholar
Ishikawa, T. & Qian, X. Numerical simulation of wind-induced current and water exchange at the mouth of Takahamairi Bay of the Lake Kasumigaura during the formation of diurnal thermocline. Tohoku Univ. 2, 419–428 (1998).
Wu, H., Wu, X. & Yang, T. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: Numerical simulations and laboratory experiments. Water Res. 194(3), 116908 (2021).
Google Scholar
Source: Ecology - nature.com