in

Insect vector manipulation by a plant virus and simulation modeling of its potential impact on crop infection

  • Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 479–480, 278–289. https://doi.org/10.1016/j.virol.2015.03.026 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nault, L. R. Arthropod transmission of plant viruses: A new synthesis. Ann. Entomol. Soc. Am. 90, 521–541. https://doi.org/10.1093/aesa/90.5.521 (1997).

    Article 

    Google Scholar 

  • Maluta, N., Fereres, A. & Lopes, J. R. S. Plant-mediated indirect effects of two viruses with different transmission modes on Bemisia tabaci feeding behavior and fitness. J. Pest Sci. 92, 405–416. https://doi.org/10.1007/s10340-018-1039-0 (2019).

    Article 

    Google Scholar 

  • Scheirs, J. & De Bruyn, L. Integrating optimal foraging and optimal oviposition theory in plant–insect research. Oikos 96, 187–191. https://doi.org/10.1034/j.1600-0706.2002.960121.x (2002).

    Article 

    Google Scholar 

  • Pyke, G. H. Optimal foraging theory: A critical review. Annu. Rev. Ecol. Syst. 15, 523–575. https://doi.org/10.1146/annurev.es.15.110184.002515 (1984).

    Article 

    Google Scholar 

  • Hurd, H. Manipulation of medically important insect vectors by their parasites. Annu. Rev. Entomol. 48, 141–161. https://doi.org/10.1146/annurev.ento.48.091801.112722 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Moore, J. Parasites and the Behavior of Animals (Oxford University Press, 2002).

    Google Scholar 

  • Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host–vector interactions: Evidence from plant viruses. Funct. Ecol. 26, 1162–1175. https://doi.org/10.1111/j.1365-2435.2012.02026.x (2012).

    Article 

    Google Scholar 

  • Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect. Sci. 16, 36–43. https://doi.org/10.1016/j.cois.2016.05.007 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Moreno-Delafuente, A., Garzo, E., Moreno, A. & Fereres, A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 8, e61543. https://doi.org/10.1371/journal.pone.0061543 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, J. C. K. & Falk, B. W. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44, 183–212. https://doi.org/10.1146/annurev.phyto.44.070505.143325 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. 108, 9350–9355. https://doi.org/10.1073/pnas.1100773108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajabaskar, D., Bosque-Pérez, N. A. & Eigenbrode, S. D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 186, 32–37. https://doi.org/10.1016/j.virusres.2013.11.005 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Su, Q. et al. Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. J. Econ. Entomol. 108, 11–19. https://doi.org/10.1093/jee/tou012 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Chen, G. et al. Virus infection of a weed increases vector attraction to and vector fitness on the weed. Sci. Rep. 3, 2253. https://doi.org/10.1038/srep02253 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, J. et al. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc. Natl. Acad. Sci. 114, 6746–6751. https://doi.org/10.1073/pnas.1701720114 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogada, P. A., Moualeu, D. P. & Poehling, H.-M. Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLoS ONE 11, e0154533. https://doi.org/10.1371/journal.pone.0154533 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shoemaker, L. G. et al. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 22, 1115–1125. https://doi.org/10.1111/ele.13268 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Shelton, A. M. & Badenes-Perez, F. R. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51, 285–308. https://doi.org/10.1146/annurev.ento.51.110104.150959 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bennett, C. W. The Curly Top Disease of Sugarbeet and Other Plants (The American Phytopathological Society, 1971).

    Book 

    Google Scholar 

  • Chen, L.-F. & Gilbertson, R. L. Chapter 17: Transmission of curtoviruses (beet curly top virus) by the beet leafhopper (Circulifer tenellus). In Vector-Mediated Transmission of Plant Pathogens (ed. Brown, J. K.) 243–262 (The American Phytopathological Society of America, 2016).

    Chapter 

    Google Scholar 

  • Creamer, R. Chapter 37: Beet curly top virus transmission, epidemiology, and management. In Applied Plant Virology (ed. Awasthi, L. P.) 521–527 (Academic Press, 2020).

    Chapter 

    Google Scholar 

  • Gilbertson, R. L., Melgarejo, T. A., Rojas, M. R., Wintermantel, W. M. & Stanley, J. Beet curly top virus (Geminiviridae). In Encyclopedia of Virology 4th edn (eds Bamford, D. H. & Zuckerman, M.) 200–212 (Academic Press, 2021).

    Chapter 

    Google Scholar 

  • Hudson, A., Richman, D. B., Escobar, I. & Creamer, R. Comparison of the feeding behavior and genetics of beet leafhopper, Circulifer tenellus, populations from California and New Mexico. Southwest. Entomol. 35, 241–250, 210 (2010).

    Article 

    Google Scholar 

  • Soto, M. J. & Gilbertson, R. L. Distribution and rate of movement of the curtovirus Beet mild curly top virus (Family Geminiviridae) in the beet leafhopper. Phytopathology 93, 478–484. https://doi.org/10.1094/phyto.2003.93.4.478 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Prager, S. M., Lewis, O. M., Michels, J. & Nansen, C. The influence of maturity and variety of potato plants on oviposition and probing of Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 43, 402–409. https://doi.org/10.1603/en13278 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Prager, S. M., Vaughn, K., Lewis, M. & Nansen, C. Oviposition and leaf probing by Bactericera cockerelli (Homoptera: Psyllidae) in response to a limestone particle film or a plant growth regulator applied to potato plants. Crop Prot. 45, 57–62 (2013).

    CAS 
    Article 

    Google Scholar 

  • McBryde, M. C. A method of demonstrating rust hyphae and Haustoria in unsectioned leaf tissue. Am. J. Bot. 23, 686–688 (1936).

    Article 

    Google Scholar 

  • Backus, E. A., Hunter, W. B. & Arne, C. N. Technique for staining leafhopper (Homoptera: Cicadellidae) salivary sheaths and eggs within unsectioned plant tissue. J. Econ. Entomol. 81, 1819–1823. https://doi.org/10.1093/jee/81.6.1819 (1988).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical computing, Vienna, Austria, 2019).

  • Stafford, C. A., Walker, G. P. & Creamer, R. Stylet penetration behavior resulting in inoculation of beet severe curly top virus by beet leafhopper, Circulifer tenellus. Entomol. Exp. Appl. 130, 130–137. https://doi.org/10.1111/j.1570-7458.2008.00813.x (2009).

    Article 

    Google Scholar 

  • Chen, L.-F., Brannigan, K., Clark, R. & Gilbertson, R. L. Characterization of curtoviruses associated with curly top disease of tomato in California and monitoring for these viruses in beet leafhoppers. Plant Dis. 94, 99–108. https://doi.org/10.1094/pdis-94-1-0099 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rojas, M. R. et al. World management of geminiviruses. Annu. Rev. Phytopathol. 56, 637–677. https://doi.org/10.1146/annurev-phyto-080615-100327 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schoonhoven, L. M., Van Loon, B., van Loon, J. J. & Dicke, M. Insect-plant biology (Oxford University Press, 2005).

    Google Scholar 

  • Mauck, K. E., Kenney, J. & Chesnais, Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Curr. Opin. Insect. Sci. 33, 7–18. https://doi.org/10.1016/j.cois.2019.01.001 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. Soluble proteins of chemical communication: An overview across arthropods. Front. Physiol 5, 320. https://doi.org/10.3389/fphys.2014.00320 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pelosi, P., Zhou, J. J., Ban, L. P. & Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63, 1658–1676. https://doi.org/10.1007/s00018-005-5607-0 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T. & Fuyama, Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5, e118. https://doi.org/10.1371/journal.pbio.0050118 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Mouthparts enriched odorant binding protein AfasOBP11 plays a role in the gustatory perception of Adelphocoris fasciaticollis. J. Insect Physiol. 117, 103915. https://doi.org/10.1016/j.jinsphys.2019.103915 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Waris, M. I. et al. Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Nilaparvata lugens. Front. Physiol. 9, 379. https://doi.org/10.3389/fphys.2018.00379 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, K. et al. Odorant-binding protein 2 is involved in the preference of Sogatella furcifera (Hemiptera: Delphacidae) for rice plants infected with the Southern rice black-streaked dwarf virus. Fla. Entomol. 102, 353–358. https://doi.org/10.1653/024.102.0210 (2019).

    CAS 
    Article 

    Google Scholar 

  • Brentassi, M. E., Machado-Assefh, C. R. & Alvarez, A. E. The probing behaviour of the planthopper Delphacodes kuscheli (Hemiptera: Delphacidae) on two alternating hosts, maize and oat. Aust. Entomol. 58, 666–674. https://doi.org/10.1111/aen.12383 (2019).

    Article 

    Google Scholar 

  • Milenovic, M., Wosula, E. N., Rapisarda, C. & Legg, J. P. Impact of host plant species and whitefly species on feeding behavior of Bemisia tabaci. Front. Plant Sci. 10, 1. https://doi.org/10.3389/fpls.2019.00001 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stafford, C. A. & Walker, G. P. Characterization and correlation of DC electrical penetration graph waveforms with feeding behavior of beet leafhopper, Circulifer tenellus. Entomol. Exp. Appl. 130, 113–129. https://doi.org/10.1111/j.1570-7458.2008.00812.x (2009).

    Article 

    Google Scholar 

  • Mauck, K. E., Chesnais, Q. & Shapiro, L. R. Evolutionary determinants of host and vector manipulation by plant viruses. In Advances in Virus Research (ed. Malmstrom, C. M.) 189–250 (Academic Press, 2018).

    Google Scholar 

  • Chesnais, Q. et al. Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J. Pest Sci. 92, 791–804 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans