in

Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs

  • Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, K. F. et al. Assessing the sustainability of post-Green Revolution cereals in India. Proc. Natl Acad. Sci. USA 116, 25034 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88 (2018).

    Article 

    Google Scholar 

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article 
    PubMed 

    Google Scholar 

  • van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494 (2021).

    Article 

    Google Scholar 

  • Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • FAOSTAT. FAO http://www.fao.org/faostat/en/#home (2021).

  • Liu, Z. et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2, 426 (2021).

    Article 

    Google Scholar 

  • Zhang, Q. et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 26, 100444 (2020).

    Article 

    Google Scholar 

  • Duan, J. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, F. et al. Deceleration of China’s human water use and its key drivers. Proc. Natl Acad. Sci. USA 117, 7702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H. et al. Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models. Agr. For. Meteorol. 303, 108373 (2021).

    Article 

    Google Scholar 

  • Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Global Environ. Chang. 41, 26 (2016).

    Article 

    Google Scholar 

  • Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Chang. 26, 152 (2014).

    Article 

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, K. F., Rulli, M. C., Seveso, A. & D. Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919 (2017).

    Article 
    CAS 

    Google Scholar 

  • Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • UN Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019, Online Edition. Rev. 1 (2019). https://population.un.org/wpp/

  • 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

  • Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284 (2020).

    Article 

    Google Scholar 

  • Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Price Bureau of the National Development and Reform Commission of China. China Agricultural Products CostBenefit Compilation of Information 2017 (in Chinese) (China Statistics Press, 2017).

  • Fan, S., Brzeska, J., Keyzer, M. & Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms. (Inter. Food Policy Res. Inst., 2013).

  • Wang, S. et al. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2, 183 (2021).

    Article 

    Google Scholar 

  • Yin, Y. et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl Acad. Sci. USA 118, e2106576118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guiding opinions of the ministry of agriculture on the adjustment of maize structure in the “sickle” area. Ministry of Agriculture and Rural Affairs of the People’s Republic of China http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6103893.htm (2017).

  • Zhang, F., Chen, X. & Vitousek, P. An experiment for the world. Nature 497, 33 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cyberspace Administration of China. State Council of the People’s Republic of China http://www.gov.cn/xinwen/2021-12/28/content_5664873.htm (2021).

  • Kou, T. et al. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil Till. Res. 118, 132 (2012).

    Article 

    Google Scholar 

  • Li, X. et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943 (2021).

    Article 

    Google Scholar 

  • Damerau, K. et al. India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nat. Food 1, 631 (2020).

    Article 

    Google Scholar 

  • Kuang, W. et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl Sci. Rev. 9, 1 (2021).

    Google Scholar 

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385 (2018).

    Article 

    Google Scholar 

  • National population development plan: 2016–2030. National Development and Reform Commission http://www.gov.cn/zhengce/content/2017-01/25/content_5163309.htm (2016).

  • Ma, L. et al. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47, 7260 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).

    Article 

    Google Scholar 

  • Yan, X., Akiyama, H., Yagi, K. & Akimoto, H., Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochem. Cy. https://doi.org/10.1029/2008GB003299 (2009).

  • Smith, P., Martino, Z. & Cai, D. ‘Agriculture’, in Climate Change 2007: Mitigation (Cambridge Univ. Press, 2007).

  • Liang, D. et al. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 8, 171 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures