in

Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021)

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).

  • Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain 1, 441–446 (2018).

    Google Scholar 

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bardgett, R. D. & Cook, R. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10, 263–276 (1998).

    Google Scholar 

  • Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).

    PubMed 

    Google Scholar 

  • Vályi, K., Rillig, M. C. & Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. N. Phytologist 205, 1577–1586 (2015).

    Google Scholar 

  • de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).

    Google Scholar 

  • de Vries, F. T. et al. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE 7, e51201 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vries, F. T., van Groenigen, J. W., Hoffland, E. & Bloem, J. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol. Biochem. 43, 997–1005 (2011).

    Google Scholar 

  • Malik, A. A. et al. Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).

  • Bardgett, R. D., Streeter, T. C. & Bol, R. Soil Microbes Compete Effectively with Plants for Organic-Nitrogen Inputs to Temperate Grasslands. Ecology 84, 1277–1287 (2003).

    Google Scholar 

  • Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).

    Google Scholar 

  • Gordon, H., Haygarth, P. M. & Bardgett, R. D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 40, 302–311 (2008).

    CAS 

    Google Scholar 

  • Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    PubMed 

    Google Scholar 

  • Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ruf, A., Kuzyakov, Y. & Lopatovskaya, O. Carbon fluxes in soil food webs of increasing complexity revealed by C-14 labelling and C-13 natural abundance. Soil Biol. Biochem. 38, 2390–2400 (2006).

    CAS 

    Google Scholar 

  • Pollierer, M. M., Langel, R., Koerner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).

    PubMed 

    Google Scholar 

  • Eissfeller, V. et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol. Biochem. 62, 76–81 (2013).

    CAS 

    Google Scholar 

  • Gilbert, K. J. et al. Exploring carbon flow through the root channel in a temperate forest soil food web. Soil Biol. Biochem. 76, 45–52 (2014).

    CAS 

    Google Scholar 

  • Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).

    CAS 

    Google Scholar 

  • Chomel, M. et al. Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob. Change Biol. 25, 3549–3561 (2019).

    ADS 

    Google Scholar 

  • Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. Science 261, 906–908 (1993).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. Science 269, 1257–1260 (1995).

    ADS 
    PubMed 

    Google Scholar 

  • Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolution 27, 40–46 (2012).

    Google Scholar 

  • de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276 (2012).

    ADS 

    Google Scholar 

  • Ingrisch, J. et al. Land Use Alters the Drought Responses of Productivity and CO2 Fluxes in Mountain Grassland. Ecosystems 21, 689–703 (2018).

    PubMed 

    Google Scholar 

  • Karlowsky, S. et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant‐microbial interactions. J. Ecol. 106, 1230–1243 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vilonen, L., Ross, M. & Smith, M. D. What happens after drought ends: synthesizing terms and definitions. N. Phytologist 235, 420–431 (2022).

    Google Scholar 

  • Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G. & Bahn, M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Glob. Change Biol. 26, 4366–4378 (2020).

    ADS 

    Google Scholar 

  • Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).

    ADS 

    Google Scholar 

  • Henry, C. et al. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baptist, F. et al. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J. Exp. Bot. 60, 2725–2735 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, A. et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol. 110, 21–33 (2022).

    Google Scholar 

  • Deyn, G. B. D., Quirk, H., Oakley, S., Ostle, N. J. & Bartgett, R. D. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8, 1131–1139 (2011).

  • Pausch, J. et al. Small but active – pool size does not matter for carbon incorporation in below‐ground food webs.Functional Ecol. 30, 479–489 (2016).

    Google Scholar 

  • Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. Soil Biol. Biochem. 160, 108336 (2021).

    CAS 

    Google Scholar 

  • Joergensen, R. Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol. Biogeochemistry 32, 647–652 (2000).

    CAS 

    Google Scholar 

  • Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science 300, 1138–1140 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. N. Phytologist 153, 327–334 (2002).

    CAS 

    Google Scholar 

  • Johnson, D., Leake, J. R. & Read, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biol. Biochem. 34, 1521–1524 (2002).

    CAS 

    Google Scholar 

  • Schimel, J., Balser, T. C. & Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 88, 1386–1394 (2007).

    PubMed 

    Google Scholar 

  • Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).

    CAS 

    Google Scholar 

  • Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).

    PubMed 

    Google Scholar 

  • Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol 4, 163 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. PNAS 112, 14647–14651 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, M. F. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. Vadose Zone J. 6, 291–297 (2007).

    Google Scholar 

  • Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. bioRxiv https://doi.org/10.1101/2020.09.21.305409 (2020).

  • Leake, J. R., Ostle, N. J., Rangel-Castro, J. I. & Johnson, D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33, 152–175 (2006).

    Google Scholar 

  • Maaß, S., Migliorini, M., Rillig, M. C. & Caruso, T. Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol. Evolution 4, 4766–4774 (2014).

    Google Scholar 

  • Barnard, R. L., Osborne, C. A. & Firestone, M. K. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9, 946–957 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol 9, 119–130 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Meisner, A., Bååth, E. & Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 66, 188–192 (2013).

    CAS 

    Google Scholar 

  • Meisner, A., Rousk, J. & Bååth, E. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem. 88, 314–322 (2015).

    CAS 

    Google Scholar 

  • Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).

    PubMed 

    Google Scholar 

  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B: Biol. Sci. 368, 20130122 (2013).

    Google Scholar 

  • Baggs, E. M., Rees, R. M., Smith, K. A. & Vinten, A. J. A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use & Manag. 16, 82–87 (2000).

    Google Scholar 

  • Le Roux, X., Bardy, M., Loiseau, P. & Louault, F. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137, 417–425 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • Morley, N. & Baggs, E. M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 42, 1864–1871 (2010).

    CAS 

    Google Scholar 

  • Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).

    ADS 

    Google Scholar 

  • Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).

    CAS 

    Google Scholar 

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knapp, A. K. et al. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Glob. Change Biol. 23, 1774–1782 (2017).

    ADS 

    Google Scholar 

  • Cole, A. J. et al. Grassland biodiversity restoration increases resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).

    CAS 

    Google Scholar 

  • Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytologist 201, 916–927 (2014).

    CAS 

    Google Scholar 

  • Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).

    Google Scholar 

  • Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730 (1993).

    Google Scholar 

  • Olsson, P. A., Thingstrup, I., Jakobsen, I. & Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem. 31, 1879–1887 (1999).

    CAS 

    Google Scholar 

  • Hopkin, S. P. A key to the Collembola (springtails) of Britain and Ireland (FSC, 2007).

  • Krantz, G. W. & Walter, D. E. A manual of acarology (Texas Tech Universty Press, 2009).

  • Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. J. Theor. Biol. 256, 436–440 (2009).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ganihar, S. R. Biomass estimates of terrestrial arthropods based on body length. J. Biosci. 22, 219–224 (1997).

    Google Scholar 

  • Johnson, D., Vachon, J., Britton, A. J. & Helliwell, R. C. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. N. Phytologist 190, 740–749 (2011).

    CAS 

    Google Scholar 

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS 
    PubMed 

    Google Scholar 

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed effects models and extensions in ecology with R. (Springer, 2009).


  • Source: Ecology - nature.com

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19