Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021)
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
Google Scholar
Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain 1, 441–446 (2018).
Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
Google Scholar
Bardgett, R. D. & Cook, R. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10, 263–276 (1998).
Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).
Google Scholar
Vályi, K., Rillig, M. C. & Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. N. Phytologist 205, 1577–1586 (2015).
de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).
de Vries, F. T. et al. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE 7, e51201 (2012).
Google Scholar
de Vries, F. T., van Groenigen, J. W., Hoffland, E. & Bloem, J. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol. Biochem. 43, 997–1005 (2011).
Malik, A. A. et al. Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).
Bardgett, R. D., Streeter, T. C. & Bol, R. Soil Microbes Compete Effectively with Plants for Organic-Nitrogen Inputs to Temperate Grasslands. Ecology 84, 1277–1287 (2003).
Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).
Gordon, H., Haygarth, P. M. & Bardgett, R. D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 40, 302–311 (2008).
Google Scholar
Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).
Google Scholar
Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).
Google Scholar
Ruf, A., Kuzyakov, Y. & Lopatovskaya, O. Carbon fluxes in soil food webs of increasing complexity revealed by C-14 labelling and C-13 natural abundance. Soil Biol. Biochem. 38, 2390–2400 (2006).
Google Scholar
Pollierer, M. M., Langel, R., Koerner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).
Google Scholar
Eissfeller, V. et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol. Biochem. 62, 76–81 (2013).
Google Scholar
Gilbert, K. J. et al. Exploring carbon flow through the root channel in a temperate forest soil food web. Soil Biol. Biochem. 76, 45–52 (2014).
Google Scholar
Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).
Google Scholar
Chomel, M. et al. Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob. Change Biol. 25, 3549–3561 (2019).
Google Scholar
Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. Science 261, 906–908 (1993).
Google Scholar
de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. Science 269, 1257–1260 (1995).
Google Scholar
Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).
Google Scholar
Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolution 27, 40–46 (2012).
de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276 (2012).
Google Scholar
Ingrisch, J. et al. Land Use Alters the Drought Responses of Productivity and CO2 Fluxes in Mountain Grassland. Ecosystems 21, 689–703 (2018).
Google Scholar
Karlowsky, S. et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant‐microbial interactions. J. Ecol. 106, 1230–1243 (2017).
Google Scholar
Vilonen, L., Ross, M. & Smith, M. D. What happens after drought ends: synthesizing terms and definitions. N. Phytologist 235, 420–431 (2022).
Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G. & Bahn, M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Glob. Change Biol. 26, 4366–4378 (2020).
Google Scholar
Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).
Google Scholar
Henry, C. et al. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019).
Google Scholar
Baptist, F. et al. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J. Exp. Bot. 60, 2725–2735 (2009).
Google Scholar
Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).
Google Scholar
Williams, A. et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol. 110, 21–33 (2022).
Deyn, G. B. D., Quirk, H., Oakley, S., Ostle, N. J. & Bartgett, R. D. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8, 1131–1139 (2011).
Pausch, J. et al. Small but active – pool size does not matter for carbon incorporation in below‐ground food webs.Functional Ecol. 30, 479–489 (2016).
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).
Google Scholar
Li, Z. et al. The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. Soil Biol. Biochem. 160, 108336 (2021).
Google Scholar
Joergensen, R. Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol. Biogeochemistry 32, 647–652 (2000).
Google Scholar
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science 300, 1138–1140 (2003).
Google Scholar
Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. N. Phytologist 153, 327–334 (2002).
Google Scholar
Johnson, D., Leake, J. R. & Read, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biol. Biochem. 34, 1521–1524 (2002).
Google Scholar
Schimel, J., Balser, T. C. & Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 88, 1386–1394 (2007).
Google Scholar
Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).
Google Scholar
Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).
Google Scholar
Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol 4, 163 (2013).
Google Scholar
Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. PNAS 112, 14647–14651 (2015).
Google Scholar
de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).
Google Scholar
Allen, M. F. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. Vadose Zone J. 6, 291–297 (2007).
Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. bioRxiv https://doi.org/10.1101/2020.09.21.305409 (2020).
Leake, J. R., Ostle, N. J., Rangel-Castro, J. I. & Johnson, D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33, 152–175 (2006).
Maaß, S., Migliorini, M., Rillig, M. C. & Caruso, T. Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol. Evolution 4, 4766–4774 (2014).
Barnard, R. L., Osborne, C. A. & Firestone, M. K. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9, 946–957 (2015).
Google Scholar
Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol 9, 119–130 (2011).
Google Scholar
Meisner, A., Bååth, E. & Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 66, 188–192 (2013).
Google Scholar
Meisner, A., Rousk, J. & Bååth, E. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem. 88, 314–322 (2015).
Google Scholar
Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).
Google Scholar
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B: Biol. Sci. 368, 20130122 (2013).
Baggs, E. M., Rees, R. M., Smith, K. A. & Vinten, A. J. A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use & Manag. 16, 82–87 (2000).
Le Roux, X., Bardy, M., Loiseau, P. & Louault, F. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137, 417–425 (2003).
Google Scholar
Morley, N. & Baggs, E. M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 42, 1864–1871 (2010).
Google Scholar
Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).
Google Scholar
Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).
Google Scholar
Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
Google Scholar
Knapp, A. K. et al. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Glob. Change Biol. 23, 1774–1782 (2017).
Google Scholar
Cole, A. J. et al. Grassland biodiversity restoration increases resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).
Google Scholar
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytologist 201, 916–927 (2014).
Google Scholar
Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).
Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730 (1993).
Olsson, P. A., Thingstrup, I., Jakobsen, I. & Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem. 31, 1879–1887 (1999).
Google Scholar
Hopkin, S. P. A key to the Collembola (springtails) of Britain and Ireland (FSC, 2007).
Krantz, G. W. & Walter, D. E. A manual of acarology (Texas Tech Universty Press, 2009).
Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. J. Theor. Biol. 256, 436–440 (2009).
Google Scholar
Ganihar, S. R. Biomass estimates of terrestrial arthropods based on body length. J. Biosci. 22, 219–224 (1997).
Johnson, D., Vachon, J., Britton, A. J. & Helliwell, R. C. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. N. Phytologist 190, 740–749 (2011).
Google Scholar
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).
Google Scholar
Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed effects models and extensions in ecology with R. (Springer, 2009).
Source: Ecology - nature.com