in

Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection

  • Poirel, L. et al. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 1087–1089 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, N. C., Weigel, L. M., Patel, J. B. & Tenover, F. C. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob. Agents Chemother. 49, 470–472 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).

    CAS 

    Google Scholar 

  • Ghaly, T. M. & Gillings, M. R. Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol. 26, 904–912 (2018).

    CAS 

    Google Scholar 

  • Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown-Jaque, M., Calero-Cáceres, W. & Muniesa, M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid https://doi.org/10.1016/j.plasmid.2015.01.001 (2015).

  • Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).

  • Scott, K. P. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell. Mol. Life Sci. 59, 2071–2082 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pezzella, C., Ricci, A., DiGiannatale, E., Luzzi, I. & Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 48, 903–908 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Imchen, M. & Kumavath, R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol. Ecol. 96, fiaa173 (2020).

    CAS 

    Google Scholar 

  • Zhang, T., Zhang, X.-X. & Ye, L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6, e26041 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, H. et al. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrob. Agents Chemother. 56, 1698–1702 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smet, A. et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS ONE 5, e11202 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Revilla, C. et al. Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob. Agents Chemother. 52, 1472–1480 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poirel, L., Dortet, L., Bernabeu, S. & Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55, 5403–5407 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toleman, M. A., Spencer, J., Jones, L. & Walsh, T. R. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 2773–2776 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonnin, R. A., Poirel, L. & Nordmann, P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 9, 33–41 (2014).

    CAS 

    Google Scholar 

  • Waterman, P. E. et al. Bacterial peritonitis due to Acinetobacter baumannii sequence type 25 with plasmid-borne New Delhi metallo-β-lactamase in Honduras. Antimicrob. Agents Chemother. 57, 4584–4586 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGann, P. et al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J. Clin. Microbiol. 51, 1942–1944 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, X. et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spanogiannopoulos, P., Waglechner, N., Koteva, K. & Wright, G. D. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl Acad. Sci. USA 111, 7102–7107 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J. et al. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microb. Ecol. 65, 975–981 (2013).

    CAS 

    Google Scholar 

  • D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mindlin, S., Soina, V. S., Petrova, M. A. & Gorlenko, Zh. M. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Genetika 44, 36–44 (2008).

    CAS 

    Google Scholar 

  • Cohen, S. N. Transposable genetic elements and plasmid evolution. Nature 263, 731–738 (1976).

    CAS 

    Google Scholar 

  • Wright, G. D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 51, 57–63 (2019).

    CAS 

    Google Scholar 

  • von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) https://doi.org/10.1038/hdy.2010.24 (2011).

  • Kottara, A., Hall, J. P., Harrison, E. & Brockhurst, M. A. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol. Ecol. 94, fix172 (2018).

    Google Scholar 

  • Hall, J. P., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat. Ecol. Evol. 1, 1348–1353 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Naumann, T. A. & Reznikoff, W. S. Tn5 transposase with an altered specificity for transposon ends. J. Bacteriol. 184, 233–240 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016).

    CAS 

    Google Scholar 

  • Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).

    CAS 

    Google Scholar 

  • Dimitriu, T., Mathews, A. C. & Buckling, A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc. Natl Acad. Sci. USA 118, e2107818118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lichtenstein, C. & Brenner, S. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol. Gen. Genet. 183, 380–387 (1981).

    CAS 

    Google Scholar 

  • Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, eaax3173 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).

    CAS 

    Google Scholar 

  • Seelke, R. W., Kline, B. C., Trawick, J. D. & Ritts, G. D. Genetic studies of F plasmid maintenance genes involved in copy number control, incompatability, and partitioning. Plasmid 7, 163–179 (1982).

    CAS 

    Google Scholar 

  • Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Watve, M. M., Dahanukar, N. & Watve, M. G. Sociobiological control of plasmid copy number in bacteria. PLoS ONE 5, e9328 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehtinen, S. et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 6, eaaz6137 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).

    CAS 

    Google Scholar 

  • Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    CAS 

    Google Scholar 

  • al‐Masaudi, S. B., Day, M. & Russell, A. D. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71, 239–243 (1991).

    Google Scholar 

  • Nichols, B. P. & Guay, G. G. Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob. Agents Chemother. 33, 2042–2048 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Normark, S., Edlund, T., Grundström, T., Bergström, S. & Wolf-Watz, H. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132, 912–922 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zienkiewicz, M., Kern-Zdanowicz, I., Carattoli, A., Gniadkowski, M. & Cegłowski, P. Tandem multiplication of the IS 26-flanked amplicon with the blaSHV-5 gene within plasmid p1658/97. FEMS Microbiol. Lett. 341, 27–36 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matthews, P. R. & Stewart, P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134, 1455–1464 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, S., Berg, O. G., Roth, J. R. & Andersson, D. I. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182, 1183–1195 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

    CAS 

    Google Scholar 

  • Nicoloff, H., Perreten, V. & Levy, S. B. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob. Agents Chemother. 51, 1293–1303 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertini, A. et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 2324–2328 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knapp, C. W. et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 42, 5348–5353 (2008).

    CAS 

    Google Scholar 

  • San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 10 (2016).

    Google Scholar 

  • Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Google Scholar 

  • Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).

    CAS 

    Google Scholar 

  • You, L., Hoonlor, A. & Yin, J. Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436 (2003).

    CAS 

    Google Scholar 

  • Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    An intergenerational approach to parasitoid fitness determined using clutch size

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry