Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).
Google Scholar
Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).
Google Scholar
Christie, M. R., McNickle, G. G., French, R. A. & Blouin, M. S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc. Natl Acad. Sci. 115, 4441–4446 (2018).
Google Scholar
Zajitschek, F. & Connallon, T. Antagonistic pleiotropy in species with separate sexes, and the maintenance of genetic variation in life-history traits and fitness. Evolution 72, 1306–1316 (2018).
Google Scholar
Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun. 11, 1–11 (2020).
Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).
Google Scholar
Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. 98, 1671–1675 (2001).
Google Scholar
Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: Insights from fisher’s geometric model. Genetics 197, 991–1006 (2014).
Google Scholar
Mokkonen, M. et al. Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334, 972–974 (2011).
Google Scholar
Connallon, T. & Matthews, G. Cross‐sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol. Lett. 3, 254–262 (2019).
Google Scholar
Abbott, J., Rios-Cardenas, O. & Morris, M. R. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. Oikos 128, 1525–1536 (2019).
Morris, M. R., Goedert, D., Abbott, J. K., Robinson, D. M. & Rios-Cardenas, O. Intralocus tactical conflict and the evolution of alternative reproductive tactics. Adv Study Behav. 45, 447–478 (2013).
Kim, K. W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. 1, 1168–1176 (2017).
Google Scholar
Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, 288–294 (2014).
Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).
Google Scholar
Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302 (1950).
Google Scholar
Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).
Google Scholar
Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).
Google Scholar
Horton, B. M. et al. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl Acad. Sci. 111, 1–6 (2014).
Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).
Google Scholar
Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).
Google Scholar
Knief, U. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. 1, 1177–1184 (2017).
Google Scholar
Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).
Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).
Google Scholar
Avril, A., Purcell, J., Béniguel, S. & Chapuisat, M. Maternal effect killing by a supergene controlling ant social organization. Proc. Natl Acad. Sci. 117, 17130–17134 (2020).
Google Scholar
Gilmartin, P. M. & Li, J. Homing in on heterostyly. Heredity 105, 161–162 (2010).
Google Scholar
Loveland, J. L., Lank, D. B. & Küpper, C. Gene expression modification by an autosomal inversion associated with three male mating morphs. Front. Genet. https://doi.org/10.3389/fgene.2021.641620 (2021).
van Rhijn, J. G. The ruff. (T. & A.D. Poyser, 1991).
Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, 1–14 (2020).
Lank, D. B., Farrell, L. L., Burke, T., Piersma, T. & McRae, S. B. A dominant allele controls development into female mimic male and diminutive female ruffs. Biol. Lett. 9, 15–18 (2013).
Loveland, J. L. et al. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism. Horm. Behav. 127, 104877 (2021).
Google Scholar
Verkuil, Y. I. et al. The interplay between habitat availability and population differentiation: A case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol. J. Linn. Soc. 106, 641–656 (2012).
Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).
Google Scholar
Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol. Ecol. 26, 2430–2448 (2017).
Google Scholar
Christians, J. K. Avian egg size: Variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
Google Scholar
Pick, J. L. et al. Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13, 1–10 (2016).
Jha, A. R. et al. Whole-genome resequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Mol. Biol. Evol. 32, 2616–2632 (2015).
Google Scholar
Verhoeven, M. A. et al. Variation in egg size of black-tailed godwits. Ardea 107, 291–302 (2019).
Birchard, G. F. & Deeming, D. C. Egg allometry: influences of phylogeny and the altricial-precocial continuum. in Nests, eggs, and incubation (eds. Deeming, D. C. & Reynolds, S. J.) 97–112 (Oxford University Press, 2015).
Amat, J. A., Fraga, R. M. & Arroyo, G. M. Intraclutch egg-size variation and offspring survival in the Kentish Plover Charadrius alexandrinus. Ibis (Lond. 1859). 143, 17–23 (2001).
Rahn, H. & Paganelli, C. V. Relationship of avian egg weight to body weight. Auk 92, 750–765 (1975).
Krist, M. Egg size and offspring quality: A meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
Google Scholar
Blomqvist, D., Johansson, O. C. & Go, F. Parental quality and egg size affect chick survival in a precocial bird, the lapwing Vanellus vanellus. Oecologia 110, 18–24 (1997).
Google Scholar
Cabana, G., Frewin, A., Peters, R. H. & Randall, L. The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120, 17–25 (1982).
Weatherhead, P. J. & Teather, K. L. Sexual size dimorphism and egg-size allometry in birds. Evolution 48, 671–678 (1994).
Google Scholar
Teather, K. L. & Weatherhead, P. J. Sex-specific energy requirements of great-tailed grackle (Quiscalus mexicanus). J. Anim. Ecol. 57, 659–668 (1988).
Tschirren, B., Postma, E., Gustafsson, L., Groothuis, T. G. G. & Doligez, B. Natural selection acts in opposite ways on correlated hormonal mediators of prenatal maternal effects in a wild bird population. Ecol. Lett. 17, 1310–1315 (2014).
Google Scholar
Hegyi, G. et al. Yolk androstenedione, but not testosterone, predicts offspring fate and reflects parental quality. Behav. Ecol. 22, 29–38 (2011).
Berdan, E. L., Blanckaert, A., Butlin, R. K. & Bank, C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. e1009411 https://doi.org/10.1371/journal.pgen.1009411 (2021).
Jay, P. et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Genet. 53, 288–293 (2021).
Google Scholar
Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36, 553–561 (2018).
Google Scholar
Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).
Google Scholar
Stuglik, M. T., Babik, W., Prokop, Z. & Radwan, J. Alternative reproductive tactics and sex-biased gene expression: The study of the bulb mite transcriptome. Ecol. Evol. 4, 623–632 (2014).
Gamble, M. M. & Calsbeek, R. G. Intralocus sexual conflict can maintain alternative reproductive tactics. bioRxiv Prepr. 6 (2021).
Mank, J. E. Population genetics of sexual conflict in the genomic era. Nat. Rev. Genet. 18, 721–730 (2017).
Google Scholar
Jukema, J. & Piersma, T. Permanent female mimics in a lekking shorebird. Biol. Lett. 2, 161–164 (2006).
Google Scholar
Lank, D. B. & Smith, C. M. Conditional lekking in ruff (Philomachus pugnax). Behav. Ecol. Sociobiol. 20, 137–145 (1986).
Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).
Google Scholar
von Engelhardt, N. & Groothuis, T. G. G. Maternal Hormones in Avian Eggs. Hormones and Reproduction of Vertebrates – Volume 4. https://doi.org/10.1016/B978-0-12-374929-1.10004-6 (2011).
Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010).
Colwell, M. A. Egg-laying intervals in shorebirds. Wader Study Gr. Bull. 111, 50–59 (2006).
Goymann, W. et al. Testosterone and corticosterone during the breeding cycle of equatorial and European stonechats (Saxicola torquata axillaris and S. t. rubicola). Horm. Behav. 50, 779–785 (2006).
Google Scholar
Goymann, W., East, M. L. & Hofer, H. Androgens and the role of female ‘hyperaggressiveness’ in spotted hyenas (Crocuta crocuta). Horm. Behav. 39, 83–92 (2001).
Google Scholar
Schwabl, H. Yolk is a source of maternal testosterone for developing birds. Neurobiology 90, 11446–11450 (1993).
Google Scholar
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2020).
Giraldo-Deck, L. M. et al. Accepted version of paper data and code of manuscript: Intralocus conflicts associated with a supergene. Nature Communications (2022). Edmond Repository https://doi.org/10.17617/3.71.
Therneau, T. M. & Grambsch, P. M. The Cox Model. in Modeling Survival Data: Extending the Cox Model (eds. Therneau, T. M. & Grambsch, P. M.) 39–77 (Springer US, 2000).
Source: Ecology - nature.com