Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).
Google Scholar
Li, W.-H., Wu, C.-I. & Luo, C.-C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).
Google Scholar
Bielawski, J. P. & Yang, Z. Positive and negative selection in the DAZ gene family. Mol. Biol. Evol. 18, 523–529 (2001).
Google Scholar
Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).
Google Scholar
Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23, 263–286 (1992).
Google Scholar
Johnson, K. P. & Seger, J. Elevated rates of nonsynonymous substitution in island birds. Mol. Biol. Evol. 18, 874–881 (2001).
Google Scholar
Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).
Google Scholar
Ross, L., Hardy, N. B., Okusu, A. & Normark, B. B. Large population size predicts the distribution of asexuality in scale insects. Evolution 67, 196–206 (2013).
Google Scholar
Weber, C. C., Nabholz, B., Romiguier, J. & Ellegren, H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15, 542 (2014).
Google Scholar
Brandt, A. et al. Effective purifying selection in ancient asexual oribatid mites. Nat. Commun. 8, 873 (2017).
Google Scholar
Figuet, E. et al. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol. Biol. Evol. 33(6), 1517–1527 (2016).
Google Scholar
Saclier, N. et al. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol. Biol. Evol. 35, 2900–2912 (2018).
Google Scholar
Hebert, P. D. The Daphnia of North America: An Illustrated Fauna (on CD-ROM) (CyberNatural Software, Guelph, 1995).
Colbourne, J. K. et al. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol. J. Linn. Soc. 65, 347–365 (1998).
Crease, T. J., Omilian, A. R., Costanzo, K. S. & Taylor, D. J. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7, e46620 (2012).
Google Scholar
Mergeay, J., Verschuren, D. & De Meester, L. Cryptic invasion and dispersal of an American Daphnia in East Africa. Limnol. Oceanogr. 50, 1278–1283 (2005).
Google Scholar
Ma, X. et al. Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs. Mol. Phylogenet. Evol. 130, 424–433 (2019).
Google Scholar
So, M. et al. Invasion and molecular evolution of Daphnia pulex in Japan. Limnol. Oceanogr. 60, 1129–1138 (2015).
Google Scholar
Duggan, I. C. et al. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ‘pulex’ in New Zealand fresh waters. Aquat. Invasions 7, 585–590 (2012).
Google Scholar
Ye, Z. et al. The rapid, mass invasion of New Zealand by North American Daphnia “pulex”. Limnol. Oceanogr. 66, 2673–2683 (2021).
Google Scholar
Paland, S., Colbourne, J. K. & Lynch, M. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59, 800–813 (2005).
Google Scholar
Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).
Google Scholar
Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).
Google Scholar
Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 311, 990–992 (2006).
Google Scholar
Johnson, S. G. & Howard, R. S. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 61, 2728–2735 (2007).
Google Scholar
Neiman, M. et al. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol. Biol. Evol. 27, 954–963 (2010).
Google Scholar
Henry, L., Schwander, T. & Crespi, B. J. Deleterious mutation accumulation in asexual Timema stick insects. Mol. Biol. Evol. 29, 401–408 (2012).
Google Scholar
Tucker, A. E. et al. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl. Acad. Sci. 110, 15740–15745 (2013).
Google Scholar
Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Ye, Z. et al. A new reference genome assembly for the microcrustacean Daphnia pulex. G3 (Bethesda) 7, 1405–1416 (2017).
Google Scholar
Keith, N. et al. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res. 26, 60–69 (2016).
Google Scholar
Hall, D. J. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45, 94–112 (1964).
Google Scholar
McCauley, E., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Ecology 4, 505–514 (1990).
Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).
Google Scholar
Zheng, Y., Peng, R., Kuro-o, M. & Zeng, X. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol. Biol. Evol. 28, 2521–2535 (2011).
Google Scholar
Zaret, T. M. Predation and Freshwater Communities (Yale University Press, New Haven, 1980).
Lynch, M. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24, 253–272 (1979).
Google Scholar
Mills, E. L. & Forney, J. L. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Am. Fish. Soc. 112(2A), 154–161 (1983).
Google Scholar
Craddock, D. R. Effects of increased water temperature on Daphnia pulex. Fish. Bull. 74, 403–408 (1976).
Maruoka, N. & Urabe, J. Inter and intraspecific competitive abilities and the distribution ranges of two Daphnia species in Eurasian continental islands. Popul. Ecol. 62, 353–363 (2020).
Google Scholar
Dodson, S. I. & Hanazato, T. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ. Health Perspect. 103(Suppl 4), 7–11 (1995).
Google Scholar
Claska, M. E. & Gilbert, J. J. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshw. Biol. 39, 221–232 (1998).
Google Scholar
Bast, J. et al. Consequences of asexuality in natural populations: Insights from stick insects. Mol. Biol. Evol. 35, 1668–1677 (2018).
Google Scholar
Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol 29, 5–22 (2016).
Google Scholar
Hörandl, E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In Evolutionary Biology—A Transdisciplinary Approach (ed. Pontarotti, P.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-57246-4_7.
Google Scholar
Lynch, M., Bürger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).
Google Scholar
Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 154, 1379–1387 (2000).
Google Scholar
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).
Google Scholar
McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012).
Google Scholar
De Meester, L., Góme, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol. 23, 121–135 (2002).
Google Scholar
Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).
Google Scholar
Makino, T. & Kawata, M. Invasive invertebrates associated with highly duplicated gene content. Mol. Ecol. 28, 1652–1663 (2019).
Google Scholar
Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. Lond. B Biol. Sci. 279, 5048–5057 (2012).
Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).
Google Scholar
Rocha, E. P. C. Neutral theory, microbial practice: Challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Tanabe, A. S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11, 914–921 (2011).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Tian, X., Ohtsuki, H. & Urabe, J. Evolution of asexual Daphnia pulex in Japan: Variations and covariations of the digestive, morphological and life history traits. BMC Evol. Biol. 19, 122 (2019).
Google Scholar
Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2019).
Google Scholar
Lee, T. H. et al. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014).
Google Scholar
R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.R-project.org/
Source: Ecology - nature.com